Skip to main content

Imidazolium Based Ionic Liquids as Electrolytes for Energy Efficient Electrical Double Layer Capacitor: Insights from Molecular Dynamics and Electrochemical Characterization

Abstract

Ionic liquids (ILs) have attracted considerable interest as electrolytes for electrical double layer capacitors (EDLC) bringing in enhancement of energy efficiency. This work studied three imidazolium based ILs mixed with a co-solvent as the electrolytes for EDLC. A combined study involving molecular dynamics (MD) and electrochemical experiments was carried out to interpret the potential of the electrolyte solution. Initially, MD simulation was employed to compute ionic conductivity and viscosity of pure ILs, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][Tf2N]), 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([PMIM][Tf2N]) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Tf2N]) and the study was further extended to 1 mol·dm−3 solutions of these three ILs in acetonitrile (ACN). The MD results were sequentially validated by experiments. Based on the ionic conductivity and viscosity values obtained from MD and experiments, 0.5, 1.0 and 2.0 mol·dm−3 solutions of the ILs in ACN were further investigated as electrolytes for carbon based EDLC. Cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge discharge techniques were employed. From cyclic voltammetry, the observed highest value of the operating potential window was 3 V. The nearly rectangular and symmetric shape of cyclic voltammograms and vertical line of Nyquist plot at lower frequencies indicated good capacitive behavior of the system. The highest specific capacitance of 122 F·g−1 was achieved for the 1 mol·dm−3 solution of [PMIM][Tf2N] at 0.5 A·g−1. The highest energy density values were found to be 152 and 149 W·h·kg−1 for 1 mol·dm−3 solutions of [PMIM][Tf2N] and [BMIM][Tf2N], respectively. Overall, 1 mol·dm−3 solutions of the less explored [PMIM][Tf2N] and [BMIM][Tf2N] provided better electrochemical stability, energy and power density.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ji, H., Zhao, X., Qiao, Z., Jung, J., Zhu, Y., Lu, Y., Zhang, L.L., Allan, H.M., Rodney, S.R.: Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 5(1–7), 3317 (2014)

    Article  CAS  PubMed  Google Scholar 

  2. Wei, L., Sevilla, M., Fuertes, A.B., Mokaya, R., Yushin, G.: Polypyrrole-derived activated carbons for high performance electrical double-layer capacitors with ionic liquid electrolyte. Adv. Funct. Mater. 22, 827–834 (2012)

    Article  CAS  Google Scholar 

  3. Miller, J.R., Outlaw, R.A., Holloway, B.C.: Graphene double-layer capacitor with ac line-filtering performance. Science 329, 1637–1640 (2010)

    Article  CAS  PubMed  Google Scholar 

  4. Qiao, L., Shougee, A., Albrecht, T., Fobelets, K.: Oxide-coated silicon nanowire array capacitor electrodes in room temperature ionic liquid. Electrochim. Acta 210, 32–37 (2016)

    Article  CAS  Google Scholar 

  5. Kovalenko, I., Bucknall, D.G., Yushin, G.: Detonation nanodiamond and onion-like-carbon embedded polyaniline for supercapacitors. Adv. Funct. Mater. 20, 3979–3986 (2010)

    Article  CAS  Google Scholar 

  6. Ali, E.: Supercapacitors utilising ionic liquids. Energy Storage Mater. 9, 47–69 (2017)

    Google Scholar 

  7. Aken, K.L.V., Beidaghi, M., Gogotsi, Y.: Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors. Angew. Chem. Int. Ed. 54, 1–5 (2015)

    Article  CAS  Google Scholar 

  8. Brandt, A., Pohlmann, S., Varzi, A., Balducci, A., Passerini, S.: Ionic liquids in supercapacitors. MRS Bull. 38, 554–559 (2013)

    Article  CAS  Google Scholar 

  9. Zhang, X., Wang, X., Jiang, L., Wu, H., Wu, C., Su, J.: Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons. J. Power Sources 216, 290–296 (2012)

    Article  CAS  Google Scholar 

  10. Barzegar, F., Momodou, D.Y., Fashedemi, O.O., Bello, A., Dangbegnon, J.K., Manyala, N.: Investigation of different aqueous electrolytes on the electrochemical performance of activated carbon-based supercapacitors. RSC Adv. 5, 107482–107487 (2015)

    Article  CAS  Google Scholar 

  11. Ruiz, V., Huynh, T., Sivakkumar, S.R., Pandolfo, A.G.: Ionic liquid–solvent mixtures as supercapacitor electrolytes for extreme temperature operation. RSC Adv. 2, 5591–5598 (2012)

    Article  CAS  Google Scholar 

  12. Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L., Zhang, J.: A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. Shi, M., Kou, S., Yan, X.: Engineering the electrochemical capacitive properties of graphene sheets in ionic-liquid electrolytes by correct selection of anions. ChemSusChem 7, 3053–3062 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. Cao, Y., Mu, T.: Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis. Ind. Eng. Chem. Res. 53, 8651–8664 (2014)

    Article  CAS  Google Scholar 

  15. TaeYoung, K., Gyujin, J., Seonmi, Y., Kwang, S.S., Rodney, S.R.: Activated graphene based carbons as supercapacitor electrodes with macro and mesopores. ACS Nano 7, 6899–6905 (2013)

    Article  CAS  Google Scholar 

  16. Borges, R.S., Reddy, A.L.M., Rodrigues, M.F., Gullapalli, H., Balakrishnan, K., Silva, G.G., Ajayan, P.M.: Supercapacitor operating at 200 degree Celsius. Sci. Rep. 3, 2572 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bettini, L.G., Galluzzi, M., Podesta, A., Milani, P., Piseri, P.: Planar thin film supercapacitor based on cluster-assembled nanostructured carbon and ionic liquid electrolyte. Carbon 59, 212–220 (2013)

    Article  CAS  Google Scholar 

  18. Tamilarasan, P., Ramaprabhu, S.: Stretchable supercapacitors based on highly stretchable ionic liquid incorporated polymer electrolyte. Mater. Chem. Phys. 148, 48–56 (2014)

    Article  CAS  Google Scholar 

  19. Zhang, Y., Otani, A., Maginn, E.J.: Reliable viscosity calculation from equilibrium molecular dynamics simulations: a time decomposition method. J. Chem. Theory Comput. 11, 3537–3546 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. Chen, M., Pendrill, R., Widmalm, G., Brady, J.W., Wohler, J.: Molecular dynamics simulations of the ionic liquid 1-n-butyl-3-methylimidazolium chloride and its binary mixtures with ethanol. J. Chem. Theory Comput. 10, 4465–4479 (2014)

    Article  CAS  PubMed  Google Scholar 

  21. Dennington, R., Keith, T., Millam, J.: GaussView, version 5. Semichem Inc., Shawnee Mission (2009)

    Google Scholar 

  22. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09 Revision D0.1. Gaussian Inc., Wallingford, CT (2009)

    Google Scholar 

  23. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  24. Martínez, L., Andrade, R., Birgin, E.G., Martínez, J.M.: Packmol: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009)

    Article  CAS  PubMed  Google Scholar 

  25. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004)

    Article  CAS  PubMed  Google Scholar 

  26. Wang, J., Wang, W., Kollman, P.A., Case, D.A.: Automaticatom type and bond type perception in molecular mechanical calculations. J. Mol. Graphics Modell. 25, 247–260 (2006)

    Article  CAS  Google Scholar 

  27. Case, D.A., Darden, T., Cheatham, T., Simmerling, C., Wang, J., Duke, R., Luo, R., Walker, R., Zhang, W., Merz, K.: Amber 12 reference manual. University of California, San Francisco (2012)

    Google Scholar 

  28. Leontyev, I., Stuchebrukhov, A.: Accounting for electronic polarization in non-polarizable force fields. Phys. Chem. Chem. Phys. 13, 2613–2626 (2011)

    Article  CAS  PubMed  Google Scholar 

  29. Petrik, I.D., Remsing, R.C., Liu, Z., O’Brien, B.B., Moyna, G.: Solvation of carbohydrates in 1,3-dialkylimidazolium ionic liquids: insights from multinuclear NMR spectroscopy and molecular dynamics simulations. ACS Symposium Series, pp. 335–349 American Chemical Society, Washington, DC (2007)

  30. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comp. Chem. 26, 1781–1802 (2005)

    Article  CAS  Google Scholar 

  31. Nose, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)

    Article  CAS  Google Scholar 

  32. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985)

    Article  CAS  Google Scholar 

  33. Leach, A.R.: Molecular Modelling Principles and Applications. Longman, Harlow (1998)

    Google Scholar 

  34. Sarangi, S., Zhao, W., Müller-Plathe, F., Balasubramanian, S.: Correlation between dynamic heterogeneity and local structure in a room-temperature ionic liquid: a molecular dynamics study of [bmim][PF(6)]. Chem. Phys. Chem. 11, 2001–2010 (2010)

    CAS  PubMed  Google Scholar 

  35. Biswas, R., Malviya, A., Ghosh, P., Banerjee, T., Ali, S.M.: Alkali metal ion partitioning with calix[4]arene-benzo-crown-6 ionophore in acidic medium: insights from experiments, statistical mechanical framework, and molecular dynamics simulations. J. Phys. Chem. B 122, 2102–2112 (2018)

    Article  CAS  PubMed  Google Scholar 

  36. Saheb, A., Janata, J., Josowicz, M.: Reference electrode for ionic liquids. Electroanalysis 18, 405–409 (2006)

    Article  Google Scholar 

  37. Pandey, G.P., Liu, T., Hancock, C., Li, Y., Sun, X.S., Li, J.: Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-peformance solid-state supercapacitors. J. Power Sources 328, 510–519 (2016)

    Article  CAS  Google Scholar 

  38. Hofmann, A., Migeot, M., Hanemann, T.: Investigation of binary mixtures containing1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)azanide and ethylene carbonate. J. Chem. Eng. Data 61, 114–123 (2016)

    Article  CAS  Google Scholar 

  39. Gomez, E., Calvar, N., Macedo, E.A., Domínguez, A.: Effect of temperature on the physical properties of pure 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and characterization of its binary mixture with alcohols. J. Chem. Thermodyn. 45, 9–15 (2012)

    Article  CAS  Google Scholar 

  40. Vranes, M., Dozic, S., Djeric, V., Gadzuric, S.: Physicochemical characterization of 1-butyl-3-methylimidazolium and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide. J. Chem. Eng. Data 57, 1072–1077 (2012)

    Article  CAS  Google Scholar 

  41. Tsuzuki, S., Shinoda, W., Saito, H., Mikami, M., Tokuda, H., Watanabe, M.: Molecular dynamics simulations of ionic liquids: cation and anion dependence of self-diffusion coefficients of ions. J. Phys. Chem. B 113, 10641–10649 (2009)

    Article  CAS  PubMed  Google Scholar 

  42. Bozym, D.J., Uralcan, B., Limmer, D.T., Pope, M.A., Szamreta, N.J., Debenedetti, P.G., Aksay, I.A.: Anomalous capacitance maximum of the glassy carbon–ionic liquid interface through dilution with organic solvents. J. Phys. Chem. Lett. 6, 2644–2648 (2015)

    Article  CAS  PubMed  Google Scholar 

  43. Tokuda, H., Hayamizu, K., Ishii, K., Susan, M.A.B.H., Watanabe, M.: Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B 108, 16593–16600 (2004)

    Article  CAS  Google Scholar 

  44. Kim, M., Oh, L., Kim, J.: Effects of different electrolytes on the electrochemical and dynamic behavior of electric double layer capacitors based on a porous silicon carbide electrode. Phys. Chem. Chem. Phys. 17, 16367–16374 (2015)

    Article  CAS  PubMed  Google Scholar 

  45. Scalia, A., Varzi, A., Moretti, A., Ruschhaupt, P., Lamberti, A., Tresso, E., Passerini, S.: Electrolytes based on N-butyl-N-methyl-pyrrolidinium 4,5-dicyano-2-(trifluromethyl) imidazole for high voltage electrochemical double layer capacitors. ChemElectroChem 5, 1–7 (2018)

    Article  CAS  Google Scholar 

  46. Xue, Z., Qin, L., Jiang, J., Mu, T., Gao, G.: Thermal, electrochemical and radiolytic stabilities of ionic liquids. Phys. Chem. Chem. Phys. 20, 8382–8402 (2018)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Vikram Sarabhai Space Centre (ISRO), Thiruvananthapuram vide ISRO/RES/3/745/17-18. Authors acknowledge Prof. Mihir K. Purkait for providing the Microprocessor based water-soil analysis kit (VSI 302, VSI Electronic Private Ltd). Computational time from the Param Ishan supercomputer is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamal Banerjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 676 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahanta, U., Venkatesh, R.P., Sujatha, S. et al. Imidazolium Based Ionic Liquids as Electrolytes for Energy Efficient Electrical Double Layer Capacitor: Insights from Molecular Dynamics and Electrochemical Characterization. J Solution Chem 48, 1119–1134 (2019). https://doi.org/10.1007/s10953-019-00898-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-019-00898-8

Keywords

  • Ionic liquids
  • Ionic conductivity
  • Electrical double layer capacitor
  • Operating potential window
  • Specific capacitance