Abstract
Ionic liquids (ILs) have attracted considerable interest as electrolytes for electrical double layer capacitors (EDLC) bringing in enhancement of energy efficiency. This work studied three imidazolium based ILs mixed with a co-solvent as the electrolytes for EDLC. A combined study involving molecular dynamics (MD) and electrochemical experiments was carried out to interpret the potential of the electrolyte solution. Initially, MD simulation was employed to compute ionic conductivity and viscosity of pure ILs, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][Tf2N]), 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([PMIM][Tf2N]) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Tf2N]) and the study was further extended to 1 mol·dm−3 solutions of these three ILs in acetonitrile (ACN). The MD results were sequentially validated by experiments. Based on the ionic conductivity and viscosity values obtained from MD and experiments, 0.5, 1.0 and 2.0 mol·dm−3 solutions of the ILs in ACN were further investigated as electrolytes for carbon based EDLC. Cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge discharge techniques were employed. From cyclic voltammetry, the observed highest value of the operating potential window was 3 V. The nearly rectangular and symmetric shape of cyclic voltammograms and vertical line of Nyquist plot at lower frequencies indicated good capacitive behavior of the system. The highest specific capacitance of 122 F·g−1 was achieved for the 1 mol·dm−3 solution of [PMIM][Tf2N] at 0.5 A·g−1. The highest energy density values were found to be 152 and 149 W·h·kg−1 for 1 mol·dm−3 solutions of [PMIM][Tf2N] and [BMIM][Tf2N], respectively. Overall, 1 mol·dm−3 solutions of the less explored [PMIM][Tf2N] and [BMIM][Tf2N] provided better electrochemical stability, energy and power density.
Similar content being viewed by others
References
Ji, H., Zhao, X., Qiao, Z., Jung, J., Zhu, Y., Lu, Y., Zhang, L.L., Allan, H.M., Rodney, S.R.: Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 5(1–7), 3317 (2014)
Wei, L., Sevilla, M., Fuertes, A.B., Mokaya, R., Yushin, G.: Polypyrrole-derived activated carbons for high performance electrical double-layer capacitors with ionic liquid electrolyte. Adv. Funct. Mater. 22, 827–834 (2012)
Miller, J.R., Outlaw, R.A., Holloway, B.C.: Graphene double-layer capacitor with ac line-filtering performance. Science 329, 1637–1640 (2010)
Qiao, L., Shougee, A., Albrecht, T., Fobelets, K.: Oxide-coated silicon nanowire array capacitor electrodes in room temperature ionic liquid. Electrochim. Acta 210, 32–37 (2016)
Kovalenko, I., Bucknall, D.G., Yushin, G.: Detonation nanodiamond and onion-like-carbon embedded polyaniline for supercapacitors. Adv. Funct. Mater. 20, 3979–3986 (2010)
Ali, E.: Supercapacitors utilising ionic liquids. Energy Storage Mater. 9, 47–69 (2017)
Aken, K.L.V., Beidaghi, M., Gogotsi, Y.: Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors. Angew. Chem. Int. Ed. 54, 1–5 (2015)
Brandt, A., Pohlmann, S., Varzi, A., Balducci, A., Passerini, S.: Ionic liquids in supercapacitors. MRS Bull. 38, 554–559 (2013)
Zhang, X., Wang, X., Jiang, L., Wu, H., Wu, C., Su, J.: Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons. J. Power Sources 216, 290–296 (2012)
Barzegar, F., Momodou, D.Y., Fashedemi, O.O., Bello, A., Dangbegnon, J.K., Manyala, N.: Investigation of different aqueous electrolytes on the electrochemical performance of activated carbon-based supercapacitors. RSC Adv. 5, 107482–107487 (2015)
Ruiz, V., Huynh, T., Sivakkumar, S.R., Pandolfo, A.G.: Ionic liquid–solvent mixtures as supercapacitor electrolytes for extreme temperature operation. RSC Adv. 2, 5591–5598 (2012)
Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L., Zhang, J.: A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015)
Shi, M., Kou, S., Yan, X.: Engineering the electrochemical capacitive properties of graphene sheets in ionic-liquid electrolytes by correct selection of anions. ChemSusChem 7, 3053–3062 (2014)
Cao, Y., Mu, T.: Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis. Ind. Eng. Chem. Res. 53, 8651–8664 (2014)
TaeYoung, K., Gyujin, J., Seonmi, Y., Kwang, S.S., Rodney, S.R.: Activated graphene based carbons as supercapacitor electrodes with macro and mesopores. ACS Nano 7, 6899–6905 (2013)
Borges, R.S., Reddy, A.L.M., Rodrigues, M.F., Gullapalli, H., Balakrishnan, K., Silva, G.G., Ajayan, P.M.: Supercapacitor operating at 200 degree Celsius. Sci. Rep. 3, 2572 (2013)
Bettini, L.G., Galluzzi, M., Podesta, A., Milani, P., Piseri, P.: Planar thin film supercapacitor based on cluster-assembled nanostructured carbon and ionic liquid electrolyte. Carbon 59, 212–220 (2013)
Tamilarasan, P., Ramaprabhu, S.: Stretchable supercapacitors based on highly stretchable ionic liquid incorporated polymer electrolyte. Mater. Chem. Phys. 148, 48–56 (2014)
Zhang, Y., Otani, A., Maginn, E.J.: Reliable viscosity calculation from equilibrium molecular dynamics simulations: a time decomposition method. J. Chem. Theory Comput. 11, 3537–3546 (2015)
Chen, M., Pendrill, R., Widmalm, G., Brady, J.W., Wohler, J.: Molecular dynamics simulations of the ionic liquid 1-n-butyl-3-methylimidazolium chloride and its binary mixtures with ethanol. J. Chem. Theory Comput. 10, 4465–4479 (2014)
Dennington, R., Keith, T., Millam, J.: GaussView, version 5. Semichem Inc., Shawnee Mission (2009)
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09 Revision D0.1. Gaussian Inc., Wallingford, CT (2009)
Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)
Martínez, L., Andrade, R., Birgin, E.G., Martínez, J.M.: Packmol: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009)
Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004)
Wang, J., Wang, W., Kollman, P.A., Case, D.A.: Automaticatom type and bond type perception in molecular mechanical calculations. J. Mol. Graphics Modell. 25, 247–260 (2006)
Case, D.A., Darden, T., Cheatham, T., Simmerling, C., Wang, J., Duke, R., Luo, R., Walker, R., Zhang, W., Merz, K.: Amber 12 reference manual. University of California, San Francisco (2012)
Leontyev, I., Stuchebrukhov, A.: Accounting for electronic polarization in non-polarizable force fields. Phys. Chem. Chem. Phys. 13, 2613–2626 (2011)
Petrik, I.D., Remsing, R.C., Liu, Z., O’Brien, B.B., Moyna, G.: Solvation of carbohydrates in 1,3-dialkylimidazolium ionic liquids: insights from multinuclear NMR spectroscopy and molecular dynamics simulations. ACS Symposium Series, pp. 335–349 American Chemical Society, Washington, DC (2007)
Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comp. Chem. 26, 1781–1802 (2005)
Nose, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)
Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985)
Leach, A.R.: Molecular Modelling Principles and Applications. Longman, Harlow (1998)
Sarangi, S., Zhao, W., Müller-Plathe, F., Balasubramanian, S.: Correlation between dynamic heterogeneity and local structure in a room-temperature ionic liquid: a molecular dynamics study of [bmim][PF(6)]. Chem. Phys. Chem. 11, 2001–2010 (2010)
Biswas, R., Malviya, A., Ghosh, P., Banerjee, T., Ali, S.M.: Alkali metal ion partitioning with calix[4]arene-benzo-crown-6 ionophore in acidic medium: insights from experiments, statistical mechanical framework, and molecular dynamics simulations. J. Phys. Chem. B 122, 2102–2112 (2018)
Saheb, A., Janata, J., Josowicz, M.: Reference electrode for ionic liquids. Electroanalysis 18, 405–409 (2006)
Pandey, G.P., Liu, T., Hancock, C., Li, Y., Sun, X.S., Li, J.: Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-peformance solid-state supercapacitors. J. Power Sources 328, 510–519 (2016)
Hofmann, A., Migeot, M., Hanemann, T.: Investigation of binary mixtures containing1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)azanide and ethylene carbonate. J. Chem. Eng. Data 61, 114–123 (2016)
Gomez, E., Calvar, N., Macedo, E.A., Domínguez, A.: Effect of temperature on the physical properties of pure 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and characterization of its binary mixture with alcohols. J. Chem. Thermodyn. 45, 9–15 (2012)
Vranes, M., Dozic, S., Djeric, V., Gadzuric, S.: Physicochemical characterization of 1-butyl-3-methylimidazolium and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide. J. Chem. Eng. Data 57, 1072–1077 (2012)
Tsuzuki, S., Shinoda, W., Saito, H., Mikami, M., Tokuda, H., Watanabe, M.: Molecular dynamics simulations of ionic liquids: cation and anion dependence of self-diffusion coefficients of ions. J. Phys. Chem. B 113, 10641–10649 (2009)
Bozym, D.J., Uralcan, B., Limmer, D.T., Pope, M.A., Szamreta, N.J., Debenedetti, P.G., Aksay, I.A.: Anomalous capacitance maximum of the glassy carbon–ionic liquid interface through dilution with organic solvents. J. Phys. Chem. Lett. 6, 2644–2648 (2015)
Tokuda, H., Hayamizu, K., Ishii, K., Susan, M.A.B.H., Watanabe, M.: Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B 108, 16593–16600 (2004)
Kim, M., Oh, L., Kim, J.: Effects of different electrolytes on the electrochemical and dynamic behavior of electric double layer capacitors based on a porous silicon carbide electrode. Phys. Chem. Chem. Phys. 17, 16367–16374 (2015)
Scalia, A., Varzi, A., Moretti, A., Ruschhaupt, P., Lamberti, A., Tresso, E., Passerini, S.: Electrolytes based on N-butyl-N-methyl-pyrrolidinium 4,5-dicyano-2-(trifluromethyl) imidazole for high voltage electrochemical double layer capacitors. ChemElectroChem 5, 1–7 (2018)
Xue, Z., Qin, L., Jiang, J., Mu, T., Gao, G.: Thermal, electrochemical and radiolytic stabilities of ionic liquids. Phys. Chem. Chem. Phys. 20, 8382–8402 (2018)
Acknowledgements
This work was funded by the Vikram Sarabhai Space Centre (ISRO), Thiruvananthapuram vide ISRO/RES/3/745/17-18. Authors acknowledge Prof. Mihir K. Purkait for providing the Microprocessor based water-soil analysis kit (VSI 302, VSI Electronic Private Ltd). Computational time from the Param Ishan supercomputer is duly acknowledged.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Mahanta, U., Venkatesh, R.P., Sujatha, S. et al. Imidazolium Based Ionic Liquids as Electrolytes for Energy Efficient Electrical Double Layer Capacitor: Insights from Molecular Dynamics and Electrochemical Characterization. J Solution Chem 48, 1119–1134 (2019). https://doi.org/10.1007/s10953-019-00898-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-019-00898-8