Abstract
This paper presents the experimental values of densities, viscosities and refractive indices for 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4])–diethylenetriamine (DETA) mixtures over the entire composition range and temperature range 298.15–333.15 K. The physico-chemical properties such as excess molar volume, partial molar volume, partial molar volume at infinite dilution, apparent molar volume, apparent molar volume at infinite dilution, isobaric thermal expansion coefficient and excess isobaric thermal expansion coefficient were calculated from the experimental density data. The excess Gibbs energy and excess entropy of flow were determined from the viscosity data using Eyring’s theory of rate process. The specific interactions between molecules in mixtures were explained by analyzing the behavior of the thermodynamic excess/deviation properties. To determine the correlating accurately with the utilized models including the Redlich–Kister, modified Graber, Lorentz–Lorenz and McAllister equations, the adjustable parameters and standard deviations were determined. Moreover, the qualitative analysis of these properties was further legitimized with Fourier-transform infrared (FTIR) spectroscopic studies.
Similar content being viewed by others
References
Leung, D.Y., Caramanna, G., Maroto-Valer, M.M.: An overview of current status of carbon dioxide capture and storage technologies. Renew. Sust. Energ. Rev. 39, 426–443 (2014)
Shariff, A., Shaikh, M.S., Bustam, M., Garg, S., Faiqa, N., Aftab, A.: High-pressure solubility of carbon dioxide in aqueous sodium l-prolinate solution. Procedia Eng. 148, 580–587 (2016)
MacDowell, N., Florin, N., Buchard, A., Hallett, J., Galindo, A., Jackson, G., Adjiman, C.S., Williams, C.K., Shah, N., Fennell, P.: An overview of CO2 capture technologies. Energy Environ. Sci. 3, 1645–1669 (2010)
Mondal, M.K., Balsora, H.K., Varshney, P.: Progress and trends in CO2 capture/separation technologies: a review. Energy 46, 431–441 (2012)
Portugal, A., Sousa, J., Magalhães, F., Mendes, A.: Solubility of carbon dioxide in aqueous solutions of amino acid salts. Chem. Eng. Sci. 64, 1993–2002 (2009)
Song, H.-J., Park, S., Kim, H., Gaur, A., Park, J.-W., Lee, S.-J.: Carbon dioxide absorption characteristics of aqueous amino acid salt solutions. Int. J. Greenh. Gas Con. 11, 64–72 (2012)
Wei, C.-C., Puxty, G., Feron, P.: Amino acid salts for CO2 capture at flue gas temperatures. Chem. Eng. Sci. 107, 218–226 (2014)
Blanchard, L.A., Hancu, D., Beckman, E.J., Brennecke, J.F.: Green processing using ionic liquids and CO2. Nature 399, 28–29 (1999)
Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)
Bara, J.E., Carlisle, T.K., Gabriel, C.J., Camper, D., Finotello, A., Gin, D.L., Noble, R.D.: Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind. Eng. Chem. Res. 48, 2739–2751 (2009)
Al-Ghawas, H.A., Hagewiesche, D.P., Ruiz-Ibanez, G., Sandall, O.C.: Physicochemical properties important for carbon dioxide absorption in aqueous methyldiethanolamine. J. Chem. Eng. Data 34, 385–391 (1989)
Crovetto, R.: Evaluation of solubility data of the system CO2–H2O from 273 K to the critical point of water. J. Phys. Chem. Ref. Data 20, 575–589 (1991)
Hasib-ur-Rahman, M., Larachi, F.: CO2 capture in alkanolamine-RTIL blends via carbamate crystallization: route to efficient regeneration. Environ. Sci. Technol. 46, 11443–11450 (2012)
Hasib-ur-Rahman, M., Siaj, M., Larachi, F.: Ionic liquids for CO2 capture—development and progress. Chem. Eng. Process. 49, 313–322 (2010)
Vakili-Nezhaad, G.R., Al-Mammari, R., Gujarathi, A.M., Ahmad, W.: Thermophysical properties for the binary mixtures of tert-amyl methyl ether with n-hexane, cyclopentane, benzene and m-xylene at different temperatures. J. Mol. Liq. 252, 475–487 (2018)
Garg, S., Murshid, G., Mjalli, F.S., Ahmad, W.: Physical properties of aqueous blend of diethanolamine and sarcosine: experimental and correlation study. Chem. Pap. 71, 1799–1807 (2017)
Garg, S., Murshid, G., Mjalli, F.S., Ali, A., Ahmad, W.: Experimental and correlation study of selected physical properties of aqueous blends of potassium sarcosinate and 2-piperidineethanol as a solvent for CO2 capture. Chem. Eng. Res. Des. 118, 121–130 (2017)
Murshid, G., Ghaedi, H., Ayoub, M., Garg, S., Ahmad, W.: Experimental and correlation of viscosity and refractive index of non-aqueous system of diethanolamine (DEA) and dimethylformamide (DMF) for CO2 capture. J. Mol. Liq. 250, 162–170 (2018)
Garđarsdóttir, S.O.S., Normann, F., Andersson, K., Johnsson, F.: Postcombustion CO2 capture using monoethanolamine and ammonia solvents: the influence of CO2 concentration on technical performance. Ind. Eng. Chem. Res. 54, 681–690 (2015)
Harris, K.R., Kanakubo, M., Woolf, L.A.: Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate: viscosity and density relationships in ionic liquids. J. Chem. Eng. Data 52, 2425–2430 (2007)
Malham, I.B., Turmine, M.: Viscosities and refractive indices of binary mixtures of 1-butyl-3 methylimidazolium tetrafluoroborate and 1-butyl-2,3-dimethylimidazolium tetrafluoroborate with water at 298 K. J. Chem. Thermodyn. 40, 718–723 (2008)
Kavitha, T., Vasantha, T., Venkatesu, P., Devi, R.R., Hofman, T.: Thermophysical properties for the mixed solvents of N-methyl-2-pyrrolidone with some of the imidazolium-based ionic liquids. J. Mol. Liq. 198, 11–20 (2014)
Soriano, A.N., Doma, B.T., Li, M.-H.: Measurements of the density and refractive index for 1-n-butyl-3-methylimidazolium-based ionic liquids. J. Chem. Thermodyn. 41, 301–307 (2009)
Tian, S., Hou, Y., Wu, W., Ren, S., Pang, K.: Physical properties of 1-butyl-3-methylimidazolium tetrafluoroborate/N-methyl-2-pyrrolidone mixtures and the solubility of CO2 in the system at elevated pressures. J. Chem. Eng. Data 57, 756–763 (2012)
Taib, M.M., Murugesan, T.: Density, refractive index, and excess properties of 1-butyl-3-methylimidazolium tetrafluoroborate with water and monoethanolamine. J. Chem. Eng. Data 57, 120–126 (2011)
Sanchez, L.G., Espel, J.R., Onink, F., Meindersma, G.W., Haan, A.B.D.: Density, viscosity, and surface tension of synthesis grade imidazolium, pyridinium, and pyrrolidinium based room temperature ionic liquids. J. Chem. Eng. Data 54, 2803–2812 (2009)
Sunkara, G.R., Tadavarthi, M.M., Tadekoru, V.K., Tadikonda, S.K., Bezawada, S.R.: Density, refractive index, and speed of sound of the binary mixture of 1-butyl-3-methylimidazolium tetrafluoroborate + N-vinyl-2-pyrrolidinone from T = (298.15 to 323.15) K at atmospheric pressure. J. Chem. Eng. Data 60, 886–894 (2015)
Wu, J.-Y., Chen, Y.-P., Su, C.-S.: Density and viscosity of ionic liquid binary mixtures of 1-n-butyl-3-methylimidazolium tetrafluoroborate with acetonitrile, N,N-dimethylacetamide, methanol, and N-methyl-2-pyrrolidone. J. Solution Chem. 44, 395–412 (2015)
Song, D., Chen, J.: Densities and viscosities for ionic liquids mixtures containing [eOHmim][BF4], [bmim][BF4] and [bpy][BF4]. J. Chem. Thermodyn. 77, 137–143 (2014)
Jacquemin, J., Ge, R., Nancarrow, P., Rooney, D.W., Costa Gomes, M.F., Pádua, A.A., Hardacre, C.: Prediction of ionic liquid properties. I. Volumetric properties as a function of temperature at 0.1 MPa. J. Chem. Eng. Data 53, 716–726 (2008)
Govardhana Rao, S., Madhu Mohan, T., Vijaya Krishna, T., Raju, K.T.S.S., Subba Rao, B.: Excess thermodynamic properties of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate and N-octyl-2-pyrrolidone from T = (298.15 to 323.15) K at atmospheric pressure. J. Chem. Thermodyn. 89, 286–295 (2015)
Zhou, Q., Wang, L.-S., Chen, H.-P.: Densities and viscosities of 1-butyl-3-methylimidazolium tetrafluoroborate + H2O binary mixtures from (303.15 to 353.15) K. J. Chem. Eng. Data 51, 905–908 (2006)
Zafarani-Moattar, M.T., Shekaari, H.: Application of Prigogine–Flory–Patterson theory to excess molar volume and speed of sound of 1-n-butyl-3-methylimidazolium hexafluorophosphate or 1-n butyl-3-methylimidazolium tetrafluoroborate in methanol and acetonitrile. J. Chem. Thermodyn. 38, 1377–1384 (2006)
Kim, K.-S., Shin, B.-K., Lee, H.: Physical and electrochemical properties of 1-butyl-3 methylimidazolium bromide, 1-butyl-3-methylimidazolium iodide, and 1-butyl-3- methylimidazolium tetrafluoroborate. Korean J. Chem. Eng. 21, 1010–1014 (2004)
Gao, H., Qi, F., Wang, H.: Densities and volumetric properties of binary mixtures of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate with benzaldehyde. J. Chem. Thermodyn. 41, 888–892 (2009)
Wu, J.-Y., Chen, Y.-P., Su, C.-S.: The densities and viscosities of a binary liquid mixture of 1-n butyl-3-methylimidazolium tetrafluoroborate, ([Bmim][BF4]) with acetone, methyl ethyl ketone and N,N-dimethylformamide, at 303.15 to 333.15 K. J. Taiwan Inst. Chem. Eng. 45, 2205–2211 (2014)
Wang, J., Tian, Y., Zhao, Y., Zhuo, K.: A volumetric and viscosity study for the mixtures of 1-n butyl-3-methylimidazolium tetrafluoroborate ionic liquid with acetonitrile, dichloromethane, 2 butanone and N,N-dimethylformamide. Green Chem. 5, 618–622 (2003)
Sanmamed, Y.A., González-Salgado, D., Troncoso, J., Cerdeiriña, C.A., Romaní, L.: Viscosity induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry. Fluid Phase Equilib. 252, 96–102 (2007)
Singh, T., Kumar, A., Kaur, M., Kaur, G., Kumar, H.: Non-ideal behaviour of imidazolium based room temperature ionic liquids in ethylene glycol at T = (298.15 to 318.15) K. J. Chem. Thermodyn. 41, 717–723 (2009)
Pal, A., Kumar, B.: Volumetric and acoustic properties of binary mixtures of the ionic liquid 1- butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4] with alkoxyalkanols at different temperatures. J. Chem. Eng. Data 57, 688–695 (2012)
Kumar, A.: Estimates of internal pressure and molar refraction of imidazolium based ionic liquids as a function of temperature. J. Solution Chem. 37, 203–214 (2008)
de Azevedo, R.G., Esperança, J.M., Najdanovic-Visak, V., Visak, Z.P., Guedes, H.J., da Ponte, M.N., Rebelo, L.P.: Thermophysical and thermodynamic properties of 1-butyl-3 methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate over an extended pressure range. J. Chem. Eng. Data 50, 997–1008 (2005)
Gardas, R.L., Freire, M.G., Carvalho, P.J., Marrucho, I.M., Fonseca, I.M., Ferreira, A.G., Coutinho, J.A.: High-pressure densities and derived thermodynamic properties of imidazolium-based ionic liquids. J. Chem. Eng. Data 52, 80–88 (2007)
Ciocirlan, O., Croitoru, O., Iulian, O.: Densities and viscosities for binary mixtures of 1-butyl-3 methylimidazolium tetrafluoroborate ionic liquid with molecular solvents. J. Chem. Eng. Data 56, 1526–1534 (2011)
Iglesias-Otero, M.A., Troncoso, J., Carballo, E., Romaní, L.: Densities and excess enthalpies for ionic liquids + ethanol or + nitromethane. J. Chem. Eng. Data 53, 1298–1301 (2008)
Huo, Y., Xia, S., Ma, P.: Densities of ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium tetrafluoroborate, with benzene, acetonitrile, and l-propanol at T = (293.15 to 343.15) K. J. Chem. Eng. Data 52, 2077–2082 (2007)
Yusoff, R., Aroua, M., Shamiri, A., Ahmady, A., Jusoh, N., Asmuni, N., Bong, L., Thee, S.: Density and viscosity of aqueous mixtures of N-methyldiethanolamines (MDEA) and ionic liquids. J. Chem. Eng. Data 58, 240–247 (2013)
Moosavi, M., Sisco, C.J., Rostami, A.A., Vargas, F.M.: Thermodynamic properties and CO2 solubility of monoethanolamine + diethylenetriamine/aminoethylethanolamine mixtures: experimental measurements and thermodynamic modeling. Fluid Phase Equilib. 449, 175–185 (2017)
Dubey, G.P., Kumar, K.: Studies of thermodynamic, thermophysical and partial molar properties of liquid mixtures of diethylenetriamine with alcohols at 293.15 to 313.15 K. J. Mol. Liq. 180, 164–171 (2013)
Dubey, G.P., Kumar, K.: Thermodynamic properties of binary liquid mixtures of diethylenetriamine with alcohols at different temperatures. Thermochim. Acta 524, 7–17 (2011)
Hartono, A., Svendsen, H.F.: Density, viscosity, and excess properties of aqueous solution of diethylenetriamine (DETA). J. Chem. Thermodyn. 41, 973–979 (2009)
Safarov, J., Kul, I., Talibov, M., Shahverdiyev, A., Hassel, E.: Vapor pressures and activity coefficients of methanol in binary mixtures with 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide. J. Chem. Eng. Data 60, 1648–1663 (2015)
Shaikh, M., Shariff, A., Bustam, M., Murshid, G.: Measurement and prediction of physical properties of aqueous sodium L-prolinate and piperazine as a solvent blend for CO2 removal. Chem. Eng. Res. Des. 102, 378–388 (2015)
Garcia, A.A., Leron, R.B., Soriano, A.N., Li, M.-H.: Thermophysical property characterization of aqueous amino acid salt solutions containing α-aminobutyric acid. J. Chem. Thermodyn. 81, 136–142 (2015)
Navarro, S.S., Leron, R.B., Soriano, A.N., Li, M.-H.: Thermophysical property characterization of aqueous amino acid salt solution containing serine. J. Chem. Thermodyn. 78, 23–31 (2014)
Graber, T.A., Galleguillos, H.R., Céspedes, C., Taboada, M.E.: Density, refractive index, viscosity, and electrical conductivity in the Na2CO3 + poly(ethylene glycol) + H2O system from (293.15 to 308.15) K. J. Chem. Eng. Data 49, 1254–1257 (2004)
McAllister, R.A.: The viscosity of liquid mixtures. AIChE J. 6, 427–431 (1960)
Asfour, A.A., Cooper, E.F., Wu, J., Zahran, R.R.: Prediction of the McAllister model parameters from pure components properties for liquid binary n-alkane systems. Ind. Eng. Chem. Res. 30, 1666–1669 (1991)
Eyring, H.: Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936)
Wake, W.C.: The theory of rate processes and the viscosity of long-chain compounds. Trans. Faraday Soc. 43, 708–715 (1947)
Kauzmann, W., Eyring, H.: The viscous flow of large molecules. J. Am. Chem. Soc. 62, 3113–3125 (1940)
Acknowledgements
The authors appreciate the financial support of Sultan Qaboos University, Muscat, Oman (SQU) through research Project # CR/ENG//PCED/07/03.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Ahmad, W., Al-Ajmi, A. & Vakili-Nezhaad, G.R. Investigation of Physico-chemical Properties for the 1-Butyl-3-methylimidazolium Tetrafluoroborate ([Bmim][BF4])–Diethylenetriamine (DETA) System for CO2 Capture. J Solution Chem 48, 578–610 (2019). https://doi.org/10.1007/s10953-019-00868-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-019-00868-0