Skip to main content
Log in

Investigation of Physico-chemical Properties for the 1-Butyl-3-methylimidazolium Tetrafluoroborate ([Bmim][BF4])–Diethylenetriamine (DETA) System for CO2 Capture

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

This paper presents the experimental values of densities, viscosities and refractive indices for 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4])–diethylenetriamine (DETA) mixtures over the entire composition range and temperature range 298.15–333.15 K. The physico-chemical properties such as excess molar volume, partial molar volume, partial molar volume at infinite dilution, apparent molar volume, apparent molar volume at infinite dilution, isobaric thermal expansion coefficient and excess isobaric thermal expansion coefficient were calculated from the experimental density data. The excess Gibbs energy and excess entropy of flow were determined from the viscosity data using Eyring’s theory of rate process. The specific interactions between molecules in mixtures were explained by analyzing the behavior of the thermodynamic excess/deviation properties. To determine the correlating accurately with the utilized models including the Redlich–Kister, modified Graber, Lorentz–Lorenz and McAllister equations, the adjustable parameters and standard deviations were determined. Moreover, the qualitative analysis of these properties was further legitimized with Fourier-transform infrared (FTIR) spectroscopic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Leung, D.Y., Caramanna, G., Maroto-Valer, M.M.: An overview of current status of carbon dioxide capture and storage technologies. Renew. Sust. Energ. Rev. 39, 426–443 (2014)

    Article  CAS  Google Scholar 

  2. Shariff, A., Shaikh, M.S., Bustam, M., Garg, S., Faiqa, N., Aftab, A.: High-pressure solubility of carbon dioxide in aqueous sodium l-prolinate solution. Procedia Eng. 148, 580–587 (2016)

    Article  CAS  Google Scholar 

  3. MacDowell, N., Florin, N., Buchard, A., Hallett, J., Galindo, A., Jackson, G., Adjiman, C.S., Williams, C.K., Shah, N., Fennell, P.: An overview of CO2 capture technologies. Energy Environ. Sci. 3, 1645–1669 (2010)

    Article  CAS  Google Scholar 

  4. Mondal, M.K., Balsora, H.K., Varshney, P.: Progress and trends in CO2 capture/separation technologies: a review. Energy 46, 431–441 (2012)

    Article  CAS  Google Scholar 

  5. Portugal, A., Sousa, J., Magalhães, F., Mendes, A.: Solubility of carbon dioxide in aqueous solutions of amino acid salts. Chem. Eng. Sci. 64, 1993–2002 (2009)

    Article  CAS  Google Scholar 

  6. Song, H.-J., Park, S., Kim, H., Gaur, A., Park, J.-W., Lee, S.-J.: Carbon dioxide absorption characteristics of aqueous amino acid salt solutions. Int. J. Greenh. Gas Con. 11, 64–72 (2012)

    Article  CAS  Google Scholar 

  7. Wei, C.-C., Puxty, G., Feron, P.: Amino acid salts for CO2 capture at flue gas temperatures. Chem. Eng. Sci. 107, 218–226 (2014)

    Article  CAS  Google Scholar 

  8. Blanchard, L.A., Hancu, D., Beckman, E.J., Brennecke, J.F.: Green processing using ionic liquids and CO2. Nature 399, 28–29 (1999)

    Article  Google Scholar 

  9. Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)

    Article  CAS  PubMed  Google Scholar 

  10. Bara, J.E., Carlisle, T.K., Gabriel, C.J., Camper, D., Finotello, A., Gin, D.L., Noble, R.D.: Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind. Eng. Chem. Res. 48, 2739–2751 (2009)

    Article  CAS  Google Scholar 

  11. Al-Ghawas, H.A., Hagewiesche, D.P., Ruiz-Ibanez, G., Sandall, O.C.: Physicochemical properties important for carbon dioxide absorption in aqueous methyldiethanolamine. J. Chem. Eng. Data 34, 385–391 (1989)

    Article  CAS  Google Scholar 

  12. Crovetto, R.: Evaluation of solubility data of the system CO2–H2O from 273 K to the critical point of water. J. Phys. Chem. Ref. Data 20, 575–589 (1991)

    Article  CAS  Google Scholar 

  13. Hasib-ur-Rahman, M., Larachi, F.: CO2 capture in alkanolamine-RTIL blends via carbamate crystallization: route to efficient regeneration. Environ. Sci. Technol. 46, 11443–11450 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. Hasib-ur-Rahman, M., Siaj, M., Larachi, F.: Ionic liquids for CO2 capture—development and progress. Chem. Eng. Process. 49, 313–322 (2010)

    Article  CAS  Google Scholar 

  15. Vakili-Nezhaad, G.R., Al-Mammari, R., Gujarathi, A.M., Ahmad, W.: Thermophysical properties for the binary mixtures of tert-amyl methyl ether with n-hexane, cyclopentane, benzene and m-xylene at different temperatures. J. Mol. Liq. 252, 475–487 (2018)

    Article  CAS  Google Scholar 

  16. Garg, S., Murshid, G., Mjalli, F.S., Ahmad, W.: Physical properties of aqueous blend of diethanolamine and sarcosine: experimental and correlation study. Chem. Pap. 71, 1799–1807 (2017)

    Article  CAS  Google Scholar 

  17. Garg, S., Murshid, G., Mjalli, F.S., Ali, A., Ahmad, W.: Experimental and correlation study of selected physical properties of aqueous blends of potassium sarcosinate and 2-piperidineethanol as a solvent for CO2 capture. Chem. Eng. Res. Des. 118, 121–130 (2017)

    Article  CAS  Google Scholar 

  18. Murshid, G., Ghaedi, H., Ayoub, M., Garg, S., Ahmad, W.: Experimental and correlation of viscosity and refractive index of non-aqueous system of diethanolamine (DEA) and dimethylformamide (DMF) for CO2 capture. J. Mol. Liq. 250, 162–170 (2018)

    Article  CAS  Google Scholar 

  19. Garđarsdóttir, S.O.S., Normann, F., Andersson, K., Johnsson, F.: Postcombustion CO2 capture using monoethanolamine and ammonia solvents: the influence of CO2 concentration on technical performance. Ind. Eng. Chem. Res. 54, 681–690 (2015)

    Article  CAS  Google Scholar 

  20. Harris, K.R., Kanakubo, M., Woolf, L.A.: Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate: viscosity and density relationships in ionic liquids. J. Chem. Eng. Data 52, 2425–2430 (2007)

    Article  CAS  Google Scholar 

  21. Malham, I.B., Turmine, M.: Viscosities and refractive indices of binary mixtures of 1-butyl-3 methylimidazolium tetrafluoroborate and 1-butyl-2,3-dimethylimidazolium tetrafluoroborate with water at 298 K. J. Chem. Thermodyn. 40, 718–723 (2008)

    Article  CAS  Google Scholar 

  22. Kavitha, T., Vasantha, T., Venkatesu, P., Devi, R.R., Hofman, T.: Thermophysical properties for the mixed solvents of N-methyl-2-pyrrolidone with some of the imidazolium-based ionic liquids. J. Mol. Liq. 198, 11–20 (2014)

    Article  CAS  Google Scholar 

  23. Soriano, A.N., Doma, B.T., Li, M.-H.: Measurements of the density and refractive index for 1-n-butyl-3-methylimidazolium-based ionic liquids. J. Chem. Thermodyn. 41, 301–307 (2009)

    Article  CAS  Google Scholar 

  24. Tian, S., Hou, Y., Wu, W., Ren, S., Pang, K.: Physical properties of 1-butyl-3-methylimidazolium tetrafluoroborate/N-methyl-2-pyrrolidone mixtures and the solubility of CO2 in the system at elevated pressures. J. Chem. Eng. Data 57, 756–763 (2012)

    Article  CAS  Google Scholar 

  25. Taib, M.M., Murugesan, T.: Density, refractive index, and excess properties of 1-butyl-3-methylimidazolium tetrafluoroborate with water and monoethanolamine. J. Chem. Eng. Data 57, 120–126 (2011)

    Article  CAS  Google Scholar 

  26. Sanchez, L.G., Espel, J.R., Onink, F., Meindersma, G.W., Haan, A.B.D.: Density, viscosity, and surface tension of synthesis grade imidazolium, pyridinium, and pyrrolidinium based room temperature ionic liquids. J. Chem. Eng. Data 54, 2803–2812 (2009)

    Article  CAS  Google Scholar 

  27. Sunkara, G.R., Tadavarthi, M.M., Tadekoru, V.K., Tadikonda, S.K., Bezawada, S.R.: Density, refractive index, and speed of sound of the binary mixture of 1-butyl-3-methylimidazolium tetrafluoroborate + N-vinyl-2-pyrrolidinone from T = (298.15 to 323.15) K at atmospheric pressure. J. Chem. Eng. Data 60, 886–894 (2015)

    Article  CAS  Google Scholar 

  28. Wu, J.-Y., Chen, Y.-P., Su, C.-S.: Density and viscosity of ionic liquid binary mixtures of 1-n-butyl-3-methylimidazolium tetrafluoroborate with acetonitrile, N,N-dimethylacetamide, methanol, and N-methyl-2-pyrrolidone. J. Solution Chem. 44, 395–412 (2015)

    Article  CAS  Google Scholar 

  29. Song, D., Chen, J.: Densities and viscosities for ionic liquids mixtures containing [eOHmim][BF4], [bmim][BF4] and [bpy][BF4]. J. Chem. Thermodyn. 77, 137–143 (2014)

    Article  CAS  Google Scholar 

  30. Jacquemin, J., Ge, R., Nancarrow, P., Rooney, D.W., Costa Gomes, M.F., Pádua, A.A., Hardacre, C.: Prediction of ionic liquid properties. I. Volumetric properties as a function of temperature at 0.1 MPa. J. Chem. Eng. Data 53, 716–726 (2008)

    Article  CAS  Google Scholar 

  31. Govardhana Rao, S., Madhu Mohan, T., Vijaya Krishna, T., Raju, K.T.S.S., Subba Rao, B.: Excess thermodynamic properties of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate and N-octyl-2-pyrrolidone from T = (298.15 to 323.15) K at atmospheric pressure. J. Chem. Thermodyn. 89, 286–295 (2015)

    Article  CAS  Google Scholar 

  32. Zhou, Q., Wang, L.-S., Chen, H.-P.: Densities and viscosities of 1-butyl-3-methylimidazolium tetrafluoroborate + H2O binary mixtures from (303.15 to 353.15) K. J. Chem. Eng. Data 51, 905–908 (2006)

    Article  CAS  Google Scholar 

  33. Zafarani-Moattar, M.T., Shekaari, H.: Application of Prigogine–Flory–Patterson theory to excess molar volume and speed of sound of 1-n-butyl-3-methylimidazolium hexafluorophosphate or 1-n butyl-3-methylimidazolium tetrafluoroborate in methanol and acetonitrile. J. Chem. Thermodyn. 38, 1377–1384 (2006)

    Article  CAS  Google Scholar 

  34. Kim, K.-S., Shin, B.-K., Lee, H.: Physical and electrochemical properties of 1-butyl-3 methylimidazolium bromide, 1-butyl-3-methylimidazolium iodide, and 1-butyl-3- methylimidazolium tetrafluoroborate. Korean J. Chem. Eng. 21, 1010–1014 (2004)

    Article  CAS  Google Scholar 

  35. Gao, H., Qi, F., Wang, H.: Densities and volumetric properties of binary mixtures of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate with benzaldehyde. J. Chem. Thermodyn. 41, 888–892 (2009)

    Article  CAS  Google Scholar 

  36. Wu, J.-Y., Chen, Y.-P., Su, C.-S.: The densities and viscosities of a binary liquid mixture of 1-n butyl-3-methylimidazolium tetrafluoroborate, ([Bmim][BF4]) with acetone, methyl ethyl ketone and N,N-dimethylformamide, at 303.15 to 333.15 K. J. Taiwan Inst. Chem. Eng. 45, 2205–2211 (2014)

    Article  CAS  Google Scholar 

  37. Wang, J., Tian, Y., Zhao, Y., Zhuo, K.: A volumetric and viscosity study for the mixtures of 1-n butyl-3-methylimidazolium tetrafluoroborate ionic liquid with acetonitrile, dichloromethane, 2 butanone and N,N-dimethylformamide. Green Chem. 5, 618–622 (2003)

    Article  CAS  Google Scholar 

  38. Sanmamed, Y.A., González-Salgado, D., Troncoso, J., Cerdeiriña, C.A., Romaní, L.: Viscosity induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry. Fluid Phase Equilib. 252, 96–102 (2007)

    Article  CAS  Google Scholar 

  39. Singh, T., Kumar, A., Kaur, M., Kaur, G., Kumar, H.: Non-ideal behaviour of imidazolium based room temperature ionic liquids in ethylene glycol at T = (298.15 to 318.15) K. J. Chem. Thermodyn. 41, 717–723 (2009)

    Article  CAS  Google Scholar 

  40. Pal, A., Kumar, B.: Volumetric and acoustic properties of binary mixtures of the ionic liquid 1- butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4] with alkoxyalkanols at different temperatures. J. Chem. Eng. Data 57, 688–695 (2012)

    Article  CAS  Google Scholar 

  41. Kumar, A.: Estimates of internal pressure and molar refraction of imidazolium based ionic liquids as a function of temperature. J. Solution Chem. 37, 203–214 (2008)

    Article  CAS  Google Scholar 

  42. de Azevedo, R.G., Esperança, J.M., Najdanovic-Visak, V., Visak, Z.P., Guedes, H.J., da Ponte, M.N., Rebelo, L.P.: Thermophysical and thermodynamic properties of 1-butyl-3 methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate over an extended pressure range. J. Chem. Eng. Data 50, 997–1008 (2005)

    Article  CAS  Google Scholar 

  43. Gardas, R.L., Freire, M.G., Carvalho, P.J., Marrucho, I.M., Fonseca, I.M., Ferreira, A.G., Coutinho, J.A.: High-pressure densities and derived thermodynamic properties of imidazolium-based ionic liquids. J. Chem. Eng. Data 52, 80–88 (2007)

    Article  CAS  Google Scholar 

  44. Ciocirlan, O., Croitoru, O., Iulian, O.: Densities and viscosities for binary mixtures of 1-butyl-3 methylimidazolium tetrafluoroborate ionic liquid with molecular solvents. J. Chem. Eng. Data 56, 1526–1534 (2011)

    Article  CAS  Google Scholar 

  45. Iglesias-Otero, M.A., Troncoso, J., Carballo, E., Romaní, L.: Densities and excess enthalpies for ionic liquids + ethanol or + nitromethane. J. Chem. Eng. Data 53, 1298–1301 (2008)

    Article  CAS  Google Scholar 

  46. Huo, Y., Xia, S., Ma, P.: Densities of ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium tetrafluoroborate, with benzene, acetonitrile, and l-propanol at T = (293.15 to 343.15) K. J. Chem. Eng. Data 52, 2077–2082 (2007)

    Article  CAS  Google Scholar 

  47. Yusoff, R., Aroua, M., Shamiri, A., Ahmady, A., Jusoh, N., Asmuni, N., Bong, L., Thee, S.: Density and viscosity of aqueous mixtures of N-methyldiethanolamines (MDEA) and ionic liquids. J. Chem. Eng. Data 58, 240–247 (2013)

    Article  CAS  Google Scholar 

  48. Moosavi, M., Sisco, C.J., Rostami, A.A., Vargas, F.M.: Thermodynamic properties and CO2 solubility of monoethanolamine + diethylenetriamine/aminoethylethanolamine mixtures: experimental measurements and thermodynamic modeling. Fluid Phase Equilib. 449, 175–185 (2017)

    Article  CAS  Google Scholar 

  49. Dubey, G.P., Kumar, K.: Studies of thermodynamic, thermophysical and partial molar properties of liquid mixtures of diethylenetriamine with alcohols at 293.15 to 313.15 K. J. Mol. Liq. 180, 164–171 (2013)

    Article  CAS  Google Scholar 

  50. Dubey, G.P., Kumar, K.: Thermodynamic properties of binary liquid mixtures of diethylenetriamine with alcohols at different temperatures. Thermochim. Acta 524, 7–17 (2011)

    Article  CAS  Google Scholar 

  51. Hartono, A., Svendsen, H.F.: Density, viscosity, and excess properties of aqueous solution of diethylenetriamine (DETA). J. Chem. Thermodyn. 41, 973–979 (2009)

    Article  CAS  Google Scholar 

  52. Safarov, J., Kul, I., Talibov, M., Shahverdiyev, A., Hassel, E.: Vapor pressures and activity coefficients of methanol in binary mixtures with 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide. J. Chem. Eng. Data 60, 1648–1663 (2015)

    Article  CAS  Google Scholar 

  53. Shaikh, M., Shariff, A., Bustam, M., Murshid, G.: Measurement and prediction of physical properties of aqueous sodium L-prolinate and piperazine as a solvent blend for CO2 removal. Chem. Eng. Res. Des. 102, 378–388 (2015)

    Article  CAS  Google Scholar 

  54. Garcia, A.A., Leron, R.B., Soriano, A.N., Li, M.-H.: Thermophysical property characterization of aqueous amino acid salt solutions containing α-aminobutyric acid. J. Chem. Thermodyn. 81, 136–142 (2015)

    Article  CAS  Google Scholar 

  55. Navarro, S.S., Leron, R.B., Soriano, A.N., Li, M.-H.: Thermophysical property characterization of aqueous amino acid salt solution containing serine. J. Chem. Thermodyn. 78, 23–31 (2014)

    Article  CAS  Google Scholar 

  56. Graber, T.A., Galleguillos, H.R., Céspedes, C., Taboada, M.E.: Density, refractive index, viscosity, and electrical conductivity in the Na2CO3 + poly(ethylene glycol) + H2O system from (293.15 to 308.15) K. J. Chem. Eng. Data 49, 1254–1257 (2004)

    Article  CAS  Google Scholar 

  57. McAllister, R.A.: The viscosity of liquid mixtures. AIChE J. 6, 427–431 (1960)

    Article  CAS  Google Scholar 

  58. Asfour, A.A., Cooper, E.F., Wu, J., Zahran, R.R.: Prediction of the McAllister model parameters from pure components properties for liquid binary n-alkane systems. Ind. Eng. Chem. Res. 30, 1666–1669 (1991)

    Article  CAS  Google Scholar 

  59. Eyring, H.: Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936)

    Article  CAS  Google Scholar 

  60. Wake, W.C.: The theory of rate processes and the viscosity of long-chain compounds. Trans. Faraday Soc. 43, 708–715 (1947)

    Article  CAS  Google Scholar 

  61. Kauzmann, W., Eyring, H.: The viscous flow of large molecules. J. Am. Chem. Soc. 62, 3113–3125 (1940)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support of Sultan Qaboos University, Muscat, Oman (SQU) through research Project # CR/ENG//PCED/07/03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Reza Vakili-Nezhaad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1767 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, W., Al-Ajmi, A. & Vakili-Nezhaad, G.R. Investigation of Physico-chemical Properties for the 1-Butyl-3-methylimidazolium Tetrafluoroborate ([Bmim][BF4])–Diethylenetriamine (DETA) System for CO2 Capture. J Solution Chem 48, 578–610 (2019). https://doi.org/10.1007/s10953-019-00868-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-019-00868-0

Keywords

Navigation