Skip to main content
Log in

Inclusion Complex of o-Phthalaldehyde-Metolachlor with Cyclodextrins Using the Thermochemically-Induced Fluorescence Derivatization (TIFD) Method and Its Analytical Application in Waters

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A thermochemically-induced fluorescence derivatization (TIFD) method for the determination of metolachlor (MET) based on the o-phthalaldehyde thermo product complex of MET (OPA-MET) enhanced with either hydroxypropyl-γ-CD (HP-γ-CD) or dimethyl-β-CD (DM-β-CD) was investigated. The analytical conditions of the TIFD method were the same for the complexes, except for the solvent. The fluorescence enhancement was highlighted for the OPA-MET complex in the presence of cyclodextrins (CDs). Besides the stability of the OPA-MET:CD inclusion complexes, which corroborates the reproductibility of the TIFD method, a 1:1 stoichiometric ratio between OPA-MET was obtained in both of the organized environments (CDs). The binding constants (K1) of the inclusion complexes OPA-MET: HP-γ-CD and OPA-MET: DM-β-CD of 1:1 type are (264 ± 36) L·mol−1 and (173 ± 17) L·mol−1, respectively. Under the optimal conditions, the linear dynamic range of the TIFD method is 10–580 ng·mL−1 and correlation coefficients obtained through calibration curves were close to unity. Limits of detection (LODs) and quantification (LOQs) are in the ranges 0.06–0.09 ng·mL−1 and 0.2–0.3 ng·mL−1, respectively. A solid phase extraction (SPE) procedure successfully combined with the TIFD method in the presence of cyclodextrins, for quantitative analysis of samples spiked with metolachlor, led to satisfactorly accurate values (recovery: 92.2–121% and RSD: 1.1–1.3%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tong, Y., Wu, Y., Zhao, C., Xu, Y., Lu, J., Xiang, S., Zong, F., Wu, X.: Polymeric nanoparticles as a metolachlor carrier: water-based formulation for hydrophobic pesticides and absorption by plants. J. Agric. Food Chem. 65, 7371–7378 (2017)

    Article  CAS  PubMed  Google Scholar 

  2. Chen, C., Liu, F., Fan, T., Zhoua, O., Peng, Q.: Solubilization of seven hydrophobic pesticides in quaternary ammonium based eco-friendly ionic liquid aqueous systems. New J. Chem. 41, 10598–10606 (2017)

    Article  CAS  Google Scholar 

  3. Aga, D.S., Thurman, E.M.: Formation and transport of the sulfonic acid metabolites of alachlor and metolachlor in soil. Environ. Sci. Technol. 35, 2455–2460 (2001)

    Article  CAS  PubMed  Google Scholar 

  4. Kolpin, D.W., Thurman, E.M., Linhart, S.M.: Finding minimal herbicide concentrations in ground water? Try looking for their degradates. Sci. Total Environ. 248, 115–122 (2000)

    Article  CAS  PubMed  Google Scholar 

  5. Lambropoulou, D.A., Albanis, T.A., Sakkas, V.A., Dimitra, G., Hela, D.G.: Application of solid-phase microextraction in the monitoring of priority pesticides in the Kalamas River (N. W. Grece). J. Chromatogr. A 963, 107–116 (2002)

    Article  CAS  PubMed  Google Scholar 

  6. Lerch, R.N., Blanchard, P.E., Truman, E.M.: Contribution of hydroxylated atrazine degradation products to the total atrazine load in Midwestern streams. Environ. Sci. Technol. 32, 42–48 (1998)

    Article  Google Scholar 

  7. Lewis, S.E., Schaffelke, B., Shaw, M., Brodie, J.E., Bainbridge, Z.T., Rohde, K.W., Kennedy, K.E., Davis, A.M., Masters, B.L., Devlin, M.J., Mueller, J.F.: Assessing the additive risks of PS-II herbicide exposure to the Great Barrier Reef. Mar. Pollut. Bull. 65, 280–291 (2012)

    Article  CAS  PubMed  Google Scholar 

  8. European Food Safety Authority: Review of the existing maximum residue levels (MRLs) for S-metolachlor according to Article 12 of Regulation (EC) No 396/2005. EFSA J 10(2), 2586 (2012). https://doi.org/10.2903/j.efsa.2012.2586

    Article  CAS  Google Scholar 

  9. Pérez-Martínez, J.I., Ginés, J.M., Morillo, E., Gonzalez-Rodriguez, M.L., Méndez, J.R.M.: Improvement of the desorption of the pesticide 2,4-D via complexation with HP-β- cyclodextrine. Pest Manage. Sci. 56, 425–430 (2000)

    Article  Google Scholar 

  10. Cull, S.G., Holbrey, J.D., Vargas-Mora, V., Seddon, K.R., Lye, G.J.: Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. Biotech. Bioeng. 69, 227–233 (2000)

    Article  CAS  Google Scholar 

  11. Wenz, G.: Cyclodextrins as building blocks for supramolecular structures and functional units. Angew. Chem. Int. Ed. Engl. 33, 803–822 (1994)

    Article  Google Scholar 

  12. Horsky, J., Pitha, J.: Inclusion complexes of proteins: interaction of cyclodextrins with peptides containing aromatic amino acids studied by competitive spectrophotometry. J. Inclusion. Phenom. Mol. Recog. Chem 18, 291–300 (1994)

    Article  CAS  Google Scholar 

  13. Ramamurthy, V., Weiss, R.G., Hammond, G.S.: A model for the influence of organized media on photochemical reactions. In: Neckers, D.C., Volman, D.H., Von Bünau, G. (eds.) Advances in Photochemistry, vol. 67. Wiley, New York (1993)

    Google Scholar 

  14. Bortolus, P., Monti, S.: Photochemistry in Cyclodextrin Cavities. In: Neckers, D.C., Volman, D.H., Von Bünau, G. (eds.) Advances in Photochemistry, vol. 27. Wiley, New York (1996)

    Google Scholar 

  15. Muñoz de la Peña, A., Ndou, T.T., Zung, J.B., Greene, K.L., Live, D.H., Warner, I.M.: Alcohol size as a factor in the ternary complexes formed with pyrene and beta-cyclodextrin. J. Am. Chem. Soc. 113, 1572–1577 (1991)

    Article  Google Scholar 

  16. Sbai, M., Ait Lyazidi, A., Lerner, D.A., del Castillo, B., Martin, M.A.: Modified β-cylclodextrins as enhancers of fluorescence emission of carbazole alkaloid derivatives. Anal. Chim. Acta 303, 47–55 (1995)

    Article  CAS  Google Scholar 

  17. Evans, C.H., De Feyter, S., Viaene, L., van Stam, J., De Schryver, F.C.: Bimolecular processes of α-terthiophene in a β-cyclodextrin environment: an exploratory study. J. Phys. Chem. 100, 2129–2135 (1996)

    Article  CAS  Google Scholar 

  18. van Stam, J., De Feyter, S., De Schryver, F.C., Evans, C.H.: 2-Naphthol complexation by β-cyclodextrin: influence of added short linear alcohols. J. Phys. Chem. 100, 19959–19966 (1996)

    Article  Google Scholar 

  19. Uekama, K., Hirayama, F., Irie, T.: Cyclodextrins drug carrier systems. Chem. Rev. 98, 2045–2076 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. Singh, M., Sharma, R., Banerjee, U.C.: Biotechnological applications of cyclodextrins. Biotechnol. Adv. 20, 341–359 (2002)

    Article  CAS  PubMed  Google Scholar 

  21. Valeur, B., Leray, I.: Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev. 205, 3–40 (2000)

    Article  CAS  Google Scholar 

  22. Aaron, J.J., Coly, A.: Luminescence methods pesticide analysis. Applications to the environment. Analysis 28, 699–709 (2000)

    CAS  Google Scholar 

  23. Frankewich, R.P., Thimmaiah, K.N., Hinze, W.L.: Evaluation of the relative effectiveness of different water-soluble beta-cyclodextrin media to function as fluorescence enhancement agents. Anal. Chem. 63, 2924–2933 (1991)

    Article  CAS  Google Scholar 

  24. Szemán, J., Gerlóczy, A., Csabai, K., Szejtli, J., Kis, G.L., Su, P., Chau, R.Y., Jacober, A.: High-performance liquid chromatographic determination of 2-hydroxypropyl-γ-cyclodextrin in different biological fluids based on cyclodextrin enhanced fluorescence. J. Chromatogr. B 774, 157–164 (2002)

    Article  Google Scholar 

  25. Monti, S., Sortino, S., De Guidi, G., Marconi, G.: Supramolecular photochemistry of 2-(3-benzoylphenyl)propionic acid (Ketoprofen). A study in the β-cyclodextrin cavity. New J. Chem. 22, 599–604 (1998)

    Article  CAS  Google Scholar 

  26. Wan Ibrahim, W.A., Abd Wahib, S.M., Hermawan, D., Sanagi, M.M., Aboul-Enein, H.Y.: Separation of selected imidazole enantiomers using dual cyclodextrin system in micellar electrokinetic chromatography. Chirality 25, 328–335 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. Mendy, A., Thiaré, D.D., Sambou, S., Khonté, A., Coly, A., Gaye-Seye, M.D., Delattre, F., Tine, A.: New method for the determination of metolachlor and buprofezin in natural water using orthophthalaldehyde by thermochemically-induced fluorescence derivatization (TIFD). Talanta 151, 202–208 (2016)

    Article  CAS  PubMed  Google Scholar 

  28. Job, P.: Formation and stability of inorganic complexes in solution. Ann. Chim. (Rome) 9, 113–203 (1928)

    CAS  Google Scholar 

  29. Benesi, H.A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)

    Article  CAS  Google Scholar 

  30. Connors, K.A.: Binding Constants: The Measurement of Molecular Complex Stability, pp. 141–187. Wiley, New York (1987)

    Google Scholar 

  31. Hernández, F., Sancho, J.V., Pozo, O., Lara, A., Pitarch, E.: Rapid direct determination of pesticides and metabolites in environmental water samples at sub-mu g/l level by online solid-phase extraction–liquid chromatography–electrospray tandem mass spectrometry. J. Chromatogr. A 939, 1–11 (2001)

    Article  PubMed  Google Scholar 

  32. Kuster, M., López de Alda, M.J., Barata, C., Raldúa, D., Barceló, D.: Analysis of 17 polar to semi-polar pesticides in the Ebro river delta during the main growing season of rice by automated on-line solid-phase extraction–liquid chromatography–tandem mass spectrometry. Talanta 75, 390–401 (2008)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the service of Cooperation and Cultural Action of the Embassy of France in Senegal (763818C) that has funded this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alphonse Mendy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendy, A., Thiaré, D.D., Sarr, I. et al. Inclusion Complex of o-Phthalaldehyde-Metolachlor with Cyclodextrins Using the Thermochemically-Induced Fluorescence Derivatization (TIFD) Method and Its Analytical Application in Waters. J Solution Chem 48, 502–514 (2019). https://doi.org/10.1007/s10953-019-00862-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-019-00862-6

Keywords

Navigation