Advertisement

Journal of Solution Chemistry

, Volume 48, Issue 2, pp 234–247 | Cite as

Anion-Specific Effects on Activity Coefficients in Aqueous Solutions of Sodium Salts: Modeling with the Extended Debye–Hückel Theory

  • Ignat Yu. ShilovEmail author
  • Andrey K. Lyashchenko
Article
  • 85 Downloads

Abstract

The extended Debye–Hückel theory, which allows for concentration variation of electrolyte solution static permittivity, is employed to predict activity coefficients in aqueous solutions of sodium salts with various univalent anions (NaCl, NaBr, NaI, NaNO3, NaClO4 and NaSCN) at ambient conditions. Calculations without empirical adjustments reproduced the activity coefficients for NaI in the concentration range up to 6 mol·kg−1 and for NaSCN up to 2 mol·kg−1. In the case of other solutions, calculations underestimate water activity coefficients and overestimate mean ionic activity coefficients at concentrations beyond 0.5 mol·kg−1. In order to improve the representations, the model was extended to include ion pairing, which resulted in a better agreement between calculated activity coefficients and experimental data, especially for NaNO3. The ion pairing equilibrium constants were estimated and compared with available literature values. The extent of ion pairing was found to increase in the sequence NaI < NaSCN < NaBr < NaCl < NaClO4 < NaNO3, with violation of the Collins rule in the case of polyatomic oxygen-containing anions.

Keywords

Modeling Ion pair Electrolyte solution Permittivity Solvation Debye–Hückel theory 

Notes

Acknowledgements

The authors acknowledge the support from the Russian Foundation for Basic Research (Project Number 16-03-00725).

Supplementary material

10953_2019_860_MOESM1_ESM.pdf (144 kb)
Supplementary material 1 (PDF 144 kb)

References

  1. 1.
    Harned, H.S., Owen, B.B.: Physical Chemistry of Electrolytic Solutions, 3rd edn. Reinhold, New York (1958)Google Scholar
  2. 2.
    Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Butterworth’s and Co., Ltd., London (1959)Google Scholar
  3. 3.
    Bockris, J.O., Reddy, A.K.N.: Modern Electrochemistry, Vol. 1: Ionics, 2nd edn. Kluwer Academic/Plenum Publishers, New York (1998)Google Scholar
  4. 4.
    Barthel, J.M.G., Krienke, H., Kunz, W.: Physical Chemistry of Electrolyte Solutions. Modern Aspects. Springer, Darmstadt (1998)Google Scholar
  5. 5.
    Loehe, J.R., Donohue, M.D.: Recent advances in modeling thermodynamic properties of aqueous strong electrolyte systems. AIChE J. 43, 180–195 (1997)CrossRefGoogle Scholar
  6. 6.
    Friedman, H.L.: Introduction. Faraday Discuss. Chem. Soc. 64, 7–15 (1977)CrossRefGoogle Scholar
  7. 7.
    Pitzer, K.S. (ed.): Activity Coefficients in Electrolyte Solutions, 2nd edn. CRC Press, Boca Raton (1991)Google Scholar
  8. 8.
    Lin, Y., ten Kate, A., Mooijer, M., Delgado, J., Fosbøl, P.L., Thomsen, K.: Comparison of activity coefficient models for electrolyte systems. AIChE J. 56, 1334–1351 (2010)Google Scholar
  9. 9.
    Kim, S.H., Anantpinijwatna, A., Kang, J.W., Gani, R.: Analysis and modeling of alkali halide aqueous solutions. Fluid Phase Equilib. 412, 177–198 (2016)CrossRefGoogle Scholar
  10. 10.
    Kunz, W. (ed.): Specific Ion Effects. World Scientific Publishing Company, Singapore (2010)Google Scholar
  11. 11.
    Salis, A., Ninham, B.W.: Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chem. Soc. Rev. 43, 7358–7377 (2014)CrossRefGoogle Scholar
  12. 12.
    Kunz, W., Neueder, R.: An attempt of a general overview. In: Kunz, W. (ed.) Specific Ion Effects, Chap. 1. World Scientific Publishing Company, Singapore (2010)Google Scholar
  13. 13.
    Lyklema, J.: Lyotropic sequences in colloid stability revisited. Adv. Colloid Interface Sci. 100–102, 1–12 (2003)CrossRefGoogle Scholar
  14. 14.
    Collins, K.D.: Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34, 300–311 (2004)CrossRefGoogle Scholar
  15. 15.
    Blum, L., Wei, D.Q.: Analytical solution of the mean spherical approximation for an arbitrary mixture of ions in a dipolar solvent. J. Chem. Phys. 87, 555–565 (1987)CrossRefGoogle Scholar
  16. 16.
    Høye, J.S., Lomba, E., Stell, G.: Mean spherical approximation for a simple model of electrolytes. II. Correlation functions and thermodynamics: Numerical results. J. Chem. Phys. 89, 7462–7470 (1988)CrossRefGoogle Scholar
  17. 17.
    Holovko, M.F., Kapko, V.I.: Ion–dipole model for electrolyte solutions: application of the associative mean spherical approximation. Cond. Matter Phys. 10, 397–406 (2007)CrossRefGoogle Scholar
  18. 18.
    Kalyuzhnyi, Yu.V, Vlachy, V., Dill, K.A.: Aqueous alkali halide solutions: Can osmotic coefficients be explained on the basis of the ionic sizes alone? Phys. Chem. Chem. Phys. 12, 6260–6266 (2010)CrossRefGoogle Scholar
  19. 19.
    Moučka, F., Nezbeda, I., Smith, W.R.: Molecular simulation of aqueous electrolytes: Water chemical potential results and Gibbs–Duhem equation consistency tests. J. Chem. Phys. 139, 124505 (2013)CrossRefGoogle Scholar
  20. 20.
    Mester, Z., Panagiotopoulos, A.Z.: Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations. J. Chem. Phys. 142, 044507 (2015)CrossRefGoogle Scholar
  21. 21.
    Timko, J., Bucher, D., Kuyucak, S.: Dissociation of NaCl in water from ab initio molecular dynamics simulations. J. Chem. Phys. 132, 114510 (2010)CrossRefGoogle Scholar
  22. 22.
    Gaiduk, A.P., Zhang, C., Gygi, F., Galli, G.: Structural and electronic properties of aqueous NaCl solutions from ab initio molecular dynamics simulations with hybrid density functionals. Chem. Phys. Lett. 604, 89–96 (2014)CrossRefGoogle Scholar
  23. 23.
    Shilov, I.Yu., Lyashchenko, A.K.: The role of concentration dependent static permittivity of electrolyte solutions in the Debye-Hückel theory. J. Phys. Chem. B 119, 10087–10095 (2015)CrossRefGoogle Scholar
  24. 24.
    Shilov, I.Yu., Lyashchenko, A.K.: Modeling activity coefficients in alkali iodide aqueous solutions using the extended Debye–Hückel theory. J. Mol. Liq. 240, 172–178 (2017)CrossRefGoogle Scholar
  25. 25.
    Debye, P., Hückel, E.: Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Phys. Z. 24, 185–206 (1923)Google Scholar
  26. 26.
    Buchner, R., Hefter, G.: Interactions and dynamics in electrolyte solutions by dielectric spectroscopy. Phys. Chem. Chem. Phys. 11, 8984–8999 (2009)CrossRefGoogle Scholar
  27. 27.
    Lyashchenko, A., Lileev, A.: Dielectric relaxation of water in hydration shells of ions. J. Chem. Eng. Data 55, 2008–2016 (2010)CrossRefGoogle Scholar
  28. 28.
    Hamer, W.J., Wu, Y.-C.: Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25 C. J. Phys. Chem. Ref. Data 1, 1047–1100 (1972)CrossRefGoogle Scholar
  29. 29.
    Wu, Y.C., Hamer, W.J.: Revised values of the osmotic coefficients and mean activity coefficients of sodium nitrate in water at 25 C. J. Phys. Chem. Ref. Data 9, 513–518 (1980)CrossRefGoogle Scholar
  30. 30.
    Novotný, P., Söhnel, O.: Densities of binary aqueous solutions of 306 inorganic substances. J. Chem. Eng. Data 33, 49–55 (1988)CrossRefGoogle Scholar
  31. 31.
    Barthel, J., Buchner, R., Münsterer, M.: Electrolyte Data Collection. Pt. 2: Dielectric Properties of Water and Aqueous Electrolyte Solutions, V. XII, Pt. 2. Chemistry Data Series. Dechema, Frankfurt am Main (1995)Google Scholar
  32. 32.
    Buchner, R., Hefter, G.T., May, P.M.: Dielectric relaxation of aqueous NaCl solutions. J. Phys. Chem. A 103, 1–9 (1999)CrossRefGoogle Scholar
  33. 33.
    Zasetsky, A.Y., Lileev, A.S., Lyashchenko, A.K.: Dielectric properties of NaCl aqueous solutions in UHF range. Zh. Neorg. Khim. 39, 1035–1040 (1994)Google Scholar
  34. 34.
    Barthel, J., Schmithals, F., Behret, H.: Untersuchungen zur Dispersion der komplexen Dielektrizitätskonstante wäßriger und nichtwäßriger Elektrolytlösungen. I. Auswahl der Meßmethoden und Messungen an wäßrigen Alkalichlorid- und Alkalinitratlösungen bis zur Sättigungskonzentration bei 25 °C im Bereich der cm-Wellen. Z. Phys. Chem. N. F. 71, 115–131 (1970)CrossRefGoogle Scholar
  35. 35.
    Eiberweiser, A., Buchner, R.: Ion-pair or ion-cloud relaxation? On the origin of small-amplitude low-frequency relaxations of weakly associating aqueous electrolytes. J. Mol. Liq. 176, 52–59 (2012)CrossRefGoogle Scholar
  36. 36.
    Wachter, W., Kunz, W., Buchner, R., Hefter, G.: Is there an anionic Hofmeister effect on water dynamics? Dielectric spectroscopy of aqueous solutions of NaBr, NaI, NaNO3, NaClO4, and NaSCN. J. Phys. Chem. A 109, 8675–8683 (2005)CrossRefGoogle Scholar
  37. 37.
    Kobelev, A.V.: Candidate of Sciences (PhD) Thesis. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow (2012)Google Scholar
  38. 38.
    Filimonova, Z.A., Lileev, A.S., Lyashchenko, A.K.: The complex dielectric constant and relaxation in aqueous solutions of alkali-metal nitrates. Russian J. Inorg. Chem. 47, 1890–1896 (2002)Google Scholar
  39. 39.
    Barthel, J., Krüger, J., Schollmeyer, E.: Untersuchungen zur Dispersion der komplexen Dielektrizitätskonstante wäßriger und nichtwäßriger Elektrolytlösungen. III. Kritische Untersuchungen zur Meß- und Auswertemethode. Alkalifluoride, -bromide, -iodide und -perchlorate in wäßriger Lösung. Z. Phys. Chem. N. F. 104, 59–72 (1977)CrossRefGoogle Scholar
  40. 40.
    Kaatze, U.: Complex permittivity of water as a function of frequency and temperature. J. Chem. Eng. Data 34, 371–374 (1989)CrossRefGoogle Scholar
  41. 41.
    Pauling, L.: The sizes of ions and the structure of ionic crystals. J. Am. Chem. Soc. 49, 765–790 (1927)CrossRefGoogle Scholar
  42. 42.
    Marcus, Y.: Ions in Solution and their Solvation. Wiley, Hoboken, New Jersey (2015)CrossRefGoogle Scholar
  43. 43.
    Valiskó, M., Boda, D.: Comment on “The role of concentration dependent static permittivity of electrolyte solutions in the Debye-Hückel theory”. J. Phys. Chem. B 119, 14332–14336 (2015)CrossRefGoogle Scholar
  44. 44.
    Bjerrum, N.: Untersuchungen über Ionenassoziation. I. Der Einfluss der Ionenassoziation auf die Aktivität der Ionen bei mittleren Assoziationsgraden. Kgl. Danske Videnskab. Selskab, Math.-Fys. Medd. 7, 1–48 (1926)Google Scholar
  45. 45.
    Marcus, Y., Hefter, G.: Ion pairing. Chem. Rev. 106, 4585–4621 (2006)CrossRefGoogle Scholar
  46. 46.
    Marcus, Y.: On the activity coefficients of charge-symmetrical ion pairs. J. Mol. Liq. 123, 8–13 (2006)CrossRefGoogle Scholar
  47. 47.
    Krienke, H., Barthel, J.: MSA models of ion association in electrolyte solutions. Z. Phys. Chem. N. F. 204, 71–84 (1998)CrossRefGoogle Scholar
  48. 48.
    Krienke, H., Barthel, J., Holovko, M., Protsykevich, I., Kalyushnyi, Yu.: Osmotic and activity coefficients of strongly associated electrolytes over large concentration ranges from chemical model calculations. J. Mol. Liq. 87, 191–216 (2000)CrossRefGoogle Scholar
  49. 49.
    Varela, L.M., García, M., Mosquera, V.: Exact mean-field theory of ionic solutions: non-Debye screening. Phys. Rep. 382, 1–111 (2003)CrossRefGoogle Scholar
  50. 50.
    Soniat, M., Pool, G., Franklin, L., Rick, S.W.: Ion association in aqueous solution. Fluid Phase Equilib. 407, 31–38 (2016)CrossRefGoogle Scholar
  51. 51.
    Fuoss, R.M.: Conductimetric determination of thermodynamic pairing constants for symmetrical electrolytes. Proc. Natl. Acad. Sci. U.S.A. 77, 34–38 (1980)CrossRefGoogle Scholar
  52. 52.
    Gujt, J., Bešter-Rogač, M., Hribar-Lee, B.: An investigation of ion-pairing of alkali metal halides in aqueous solutions using the electrical conductivity and the Monte Carlo computer simulation methods. J. Mol. Liq. 190, 34–41 (2014)CrossRefGoogle Scholar
  53. 53.
    Bešter-Rogač, M., Neueder, R., Barthel, J.: Conductivity of sodium chloride in water + 1,4-dioxane mixtures at temperatures from 5 to 35 °C. I. Dilute solutions. J. Solution Chem. 28, 1071–1086 (1999)CrossRefGoogle Scholar
  54. 54.
    Davies, C.W.: The extent of dissociation of salts in water. Trans. Faraday Soc. 23, 351–356 (1927)Google Scholar
  55. 55.
    Justice, M.-C., Bury, R., Justice, J.-C.: Determination conductimétrique des coefficients d’activitè: sels alcalins à anions oxygènés dans l’eau a 25 °C. Electrochim. Acta 16, 687–700 (1971)CrossRefGoogle Scholar
  56. 56.
    D’Aprano, A.: Conductance and association behavior of alkali perchlorates in water at 25°. J. Phys. Chem. 75, 3290–3293 (1971)CrossRefGoogle Scholar
  57. 57.
    Barthel, J., Krienke, H., Neuder, R., Holovko, M.F.: The role of ion-aggregate formation in the calculation of physical properties of electrolyte solutions. Fluid Phase Equilib. 194–197, 107–122 (2002)CrossRefGoogle Scholar
  58. 58.
    Holovko, M., Protsykevich, I.: On the application of the associative mean spherical approximation to the ion–dipole model for electrolyte solutions. J. Mol. Liq. (2018).  https://doi.org/10.1016/j.molliq.2018.03.106 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryLomonosov Moscow State UniversityMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations