Skip to main content
Log in

Preferential Solvation of Vitamin C in Binary Solvent Mixtures Formed by Methanol, Ethanol, n-Propanol, Isopropanol and Water

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The present work is an investigation of the preferential solvation of vitamin C in five solvent mixtures: ethanol (1) + methanol (2), isopropanol (1) + methanol (2), ethanol (1) + water (2), n-propanol (1) + water (2) and isopropanol (1) + water (2) from the reported solubility data by employing the method of inverse Kirkwood–Buff integrals. In the ethanol (1) + water (2) mixtures with compositions 0.25 < x1 < 1.00, and isopropanol (1) + water (2) and n-propanol (1) + water (2) mixtures with compositions 0.20 < x1 < 1.00, the local mole fractions of ethanol, isopropanol or n-propanol are smaller than those of the bulk solutions. Consequently, the values of preferential solvation parameter (δx1,3) are negative, which shows that vitamin C is preferentially solvated by water. Perhaps the structuring of water molecules near the vitamin C molecule contributes to lowering of the δx1,3 from the neat solvent water to negative values in the three solvent mixtures. Vitamin C acts as a Lewis base that interacts with the acidic hydrogen atoms of water. Nevertheless, in the ethanol (1) + methanol (2) and isopropanol (1) + methanol (2) mixtures, vitamin C is preferentially solvated neither by methanol nor by ethanol nor isopropanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jouyban, A.: Handbook of Solubility Data for Pharmaceuticals. CRC Press, Boca Raton (2010)

    Google Scholar 

  2. Rubino, J.T.: Cosolvents and sosolvency. In: Swarbrick, J., Boylan, J.C. (eds.) Encyclopedia of Pharmaceutical Technology. Marcel Dekker, New York (1988)

    Google Scholar 

  3. Marcus, Y.: Preferential solvation in mixed solvents. In: Smith, P.E., Matteoli, E., O’Connell, J.P. (eds.) Fluctuation Theory of Solutions: Applications in Chemistry, Chemical Engineering, and Biophysics. CRC Press, Boca Raton (2013)

    Google Scholar 

  4. Tooski, H.F., Jabbari, M., Farajtabar, A.: Solubility and preferential solvation of the flavonoid naringenin in some aqueous/organic solvent mixtures. J. Solution Chem. 45, 1701–1714 (2016)

    Article  CAS  Google Scholar 

  5. Li, X.B., Wang, M.J., Du, C.B., Cong, Y., Zhao, H.K.: Preferential solvation of rosmarinic acid in binary solvent mixtures of ethanol + water and methanol + water according to the inverse Kirkwood–Buff integrals method. J. Mol. Liq. 240, 56–64 (2017)

    Article  CAS  Google Scholar 

  6. Delgado, D.R., Martínez, F.: Preferential solvation of some structurally related sulfonamides in 1-propanol + water co-solvent mixtures. Phys. Chem. Liq. 53, 293–306 (2015)

    Article  CAS  Google Scholar 

  7. Marcus, Y.: Solvent Mixtures: Properties and Selective Solvation. Marcel Dekker, New York (2002)

    Google Scholar 

  8. Szeto, Y.T., Tomlinson, B., Benzie, I.F.F.: Total antioxidant and ascorbic acid content of fresh fruits and vegetables: implications for dietary planning and food preservation. Br. J. Nutr. 87, 55–59 (2002)

    Article  CAS  PubMed  Google Scholar 

  9. Galvão, A.C., Robazzam, W.S., Bianchi, A.D., Matiello, J.A., Paludo, A.R., Thomas, R.: Solubility and thermodynamics of vitamin C in binary liquid mixtures involving water, methanol, ethanol and isopropanol at different temperatures. J. Chem. Thermodyn. 121, 8–16 (2018)

    Article  CAS  Google Scholar 

  10. Altamirando, C.R.N., Ricardo, F.P., Ricardo, A.M., Moilton Jr., R.F.: Solubility of vitamin C in water, ethanol, propan-1-ol, water + ethanol, and water + propan-1-ol at (298.15 and 308.15) K. J. Chem. Eng. Data 55, 1718–1721 (2010)

    Article  CAS  Google Scholar 

  11. Shalmashi, A., Eliassi, A.: Solubility of l-(+)-ascorbic acid in water, ethanol, methanol, propan-2-ol, acetone, acetonitrile, ethyl acetate, and tetrahydrofuran from (293 to 323) K. J. Chem. Eng. Data 53, 1332–1334 (2008)

    Article  CAS  Google Scholar 

  12. Matynia, A., Wierzbowska, B.: Influence of some factors on the yield of ascorbic acid crystallization from aqueous solutions. Przem. Chem. 65, 672–674 (1986)

    CAS  Google Scholar 

  13. Matynia, A., Wierzbowska, B.: Proceedings of the 14th Symposium on Industrial Crystallization, No. 0090. Institute of Chemical Engineering, Cambridge (1999)

  14. Wierzbowska, B., Matynia, A., Piotrowski, K., Koralewska, J.: Solubility and nucleation in l(+)-ascorbic acid–methanol–ethanol–water system. Chem. Eng. Process. 46, 351–359 (2007)

    Article  CAS  Google Scholar 

  15. Bodor, B., Lakatos, B.G.: Crystal growth of l-ascorbic acid in programmed batch cooling crystallization. Hung. J. Ind. Chem. 27, 297–300 (1999)

    CAS  Google Scholar 

  16. Apelblat, A., Manzurola, E.: Solubility of ascorbic, 2-furancarboxylic, glutaric, pimelic, salicylic, and o-phthalic acids in water from 279.15 to 342.15 K, and apparent molar volumes of ascorbic, glutaric, and pimelic acids in water at 298.15 K. J. Chem. Thermodyn. 21, 1005–1008 (1989)

    Article  CAS  Google Scholar 

  17. Tripathi, R.P., Singh, B., Bisht, S.S., Pandey, J.: l-Ascorbic acid in organic synthesis: an overview. Curr. Org. Chem. 13, 99–122 (2009)

    Article  CAS  Google Scholar 

  18. Haase, R., Tillmann, W.: Mixing properties of the liquid systems methanol + 2-propanol and 1-propanol + 2-propanol. Z. Phys. Chem. 192, 121–131 (1995)

    Article  CAS  Google Scholar 

  19. Pang, F.M., Seng, C.E., Teng, T.T., Ibrahim, M.H.: Densities and viscosities of aqueous solutions of 1-propanol and 2-propanol at temperatures from 293.15 K to 333.15 K. J. Mol. Liq. 136, 71–78 (2007)

    Article  CAS  Google Scholar 

  20. Boruń, A., Żurada, M., Bald, A.: Densities and excess molar volumes for mixtures of methanol with other alcohols at temperatures (288.15–313.15 K). J. Therm. Anal. Calorim. 100, 707–715 (2010)

    Article  CAS  Google Scholar 

  21. Marcus, Y.: The Properties of Solvents. Wiley, Chichester (1998)

    Google Scholar 

  22. Ben-Naim, A.: Theory of preferential solvation of nonelectrolytes. Cell Biophys. 12, 255–269 (1988)

    Article  CAS  PubMed  Google Scholar 

  23. Ben-Naim, A.: Preferential solvation in two- and in three-component systems. Pure Appl. Chem. 62, 25–34 (1990)

    Article  CAS  Google Scholar 

  24. Taft, R.W., Kamlet, M.J.: The solvatochromic comparison method. II. The alpha-scale of solvent hydrogen-bond donor (HBD) acidities. J. Am. Chem. Soc. 98, 2886–2894 (1976)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Hongkun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Farajtabar, A. & Hongkun, Z. Preferential Solvation of Vitamin C in Binary Solvent Mixtures Formed by Methanol, Ethanol, n-Propanol, Isopropanol and Water. J Solution Chem 48, 200–211 (2019). https://doi.org/10.1007/s10953-019-00857-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-019-00857-3

Keywords

Navigation