Skip to main content

Advertisement

Log in

Volumetric Properties of the Nucleosides Adenosine, Cytidine, and Uridine in Aqueous Solution at T = (288.15 and 313.15) K and p = (10 to 100) MPa

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Speeds of sound have been measured for aqueous solutions of the nucleosides adenosine, cytidine, and uridine at the temperatures T = (288.15 and 313.15) K and at the pressures p = (10, 20, 40, 60, 80, and 100) MPa. Using the methods described in our previous work, the partial molar volumes at infinite dilution, \(V_{2}^{\text{o}}\), the partial molar isentropic compressions at infinite dilution, \(K_{S,2}^{\text{o}}\), and the partial molar isothermal compressions at infinite dilution, \(K_{T,2}^{\text{o}} \left\{ {K_{T,2}^{\text{o}} \, = \, - \left( {\partial V_{2}^{\text{o}} /\partial p)_{T} } \right)} \right\}\), for the nucleosides were derived from the speed of sound data at elevated pressures. The thermodynamic properties \(V_{2}^{\text{o}}\) and \(K_{T,2}^{\text{o}}\) were combined with those determined previously for T = 298.15 K to create 3D surfaces that display the pressure and temperature dependences of these properties. The purine nucleoside adenosine displays distinctly different trends in these properties from those of the pyrimidine nucleosides cytidine and uridine. A semi-empirical model was used to rationalize the \(K_{T,2}^{\text{o}}\) results in terms of likely changes in hydration as a function of temperature and pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dworkin, J.P., Lazcano, A., Miller, S.L.: The roads to and from the RNA world. J. Theor. Biol. 222, 127–134 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. Bartel, D.P., Unrau, P.J.: Constructing an RNA world. Trends Cell Biol. 9, M9–M13 (1999)

    Article  CAS  PubMed  Google Scholar 

  3. Cech, T.R.: The RNA worlds in context. Cold Spring Harb. Perspect. Biol. 4, a006742 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gilbert, W.: Origin of life: the RNA world. Nature 319, 618 (1986)

    Article  Google Scholar 

  5. Higgs, P.G., Lehman, N.: The RNA world: molecular cooperation at the origins of life. Nat. Rev. Genet. 16, 7–17 (2015)

    Article  CAS  PubMed  Google Scholar 

  6. Sankaran, N.: The RNA world at 30. J. Mol. Evol. 83, 169–175 (2016)

    Article  CAS  PubMed  Google Scholar 

  7. Levy, M., Miller, S.L.: The stability of the RNA bases: implications for the origin of life. Proc. Natl. Acad. Sci. USA 95, 7933–7938 (1998)

    Article  CAS  PubMed  Google Scholar 

  8. Moulton, V., Gardner, P.P., Pointon, R.F., Creamer, L.K., Jameson, G.B., Penny, D.: RNA folding argues against a hot-start origin of life. J. Mol. Evol. 51, 416–421 (2000)

    Article  CAS  PubMed  Google Scholar 

  9. Bada, J.L.: How life began on earth: a status report. Earth Planet. Sci. Lett. 226, 1–15 (2004)

    Article  CAS  Google Scholar 

  10. Hedwig, G.R., Høgseth, E., Høiland, H.: Volumetric properties of the nucleosides adenosine, cytidine, and uridine in aqueous solution at T = 298.15 K and p = (10 to 120 MPa). J. Chem. Thermodyn. 61, 117–125 (2013)

    Article  CAS  Google Scholar 

  11. Hedwig, G.R., Jameson, G.B., Høiland, H.: Volumetric properties at high pressures of the nucleosides inosine, 2′-deoxyinosine, and 2′-deoxyguanosine and the volumetric properties of guanosine derived using group additivity methods. J. Chem. Eng. Data 59, 3593–3604 (2014)

    Article  CAS  Google Scholar 

  12. Hedwig, G.R., Høgseth, E., Høiland, H.: Volumetric properties of the glycyl group of proteins in aqueous solution at high pressures. Phys. Chem. Chem. Phys. 10, 884–897 (2008)

    Article  CAS  PubMed  Google Scholar 

  13. Hedwig, G.R., Jameson, G.B.: Volumetric interaction coefficients for some nucleosides in aqueous solution at T = 298.15 K. J. Chem. Thermodyn. 59, 188–194 (2013)

    Article  CAS  Google Scholar 

  14. Tewari, Y.B., Klein, R., Vaudin, M.D., Goldberg, R.N.: Saturation molalities and standard molar enthalpies of solution of adenosine(cr), guanosine·2H2O(cr), inosine(cr), and xanthsine·2H2O(cr) in H2O(l). J. Chem. Thermodyn. 35, 1681–1702 (2003)

    Article  CAS  Google Scholar 

  15. Tewari, Y.B., Gery, P.D., Vaudin, M.D., Mighell, A.D., Klein, R., Goldberg, R.N.: Saturation molalities and standard molar enthalpies of solution of cytidine(cr), hypoxanthine(cr), thymidine(cr), thymine(cr), uridine(cr), and xanthine(cr) in H2O(l). J. Chem. Thermodyn. 36, 645–658 (2004)

    Article  CAS  Google Scholar 

  16. Blandamer, M.J., Davis, M.I., Douhéret, G., Reis, J.C.R.: Apparent molar isentropic compressions and expansions of solutions. Chem. Soc. Rev. 30, 8–15 (2001)

    Article  CAS  Google Scholar 

  17. Desnoyers, J.E., Philip, P.R.: Isothermal compressibilities of aqueous solutions of tetraalkylammonium bromides. Can. J. Chem. 50, 1094–1096 (1972)

    Article  CAS  Google Scholar 

  18. McGlashan, M.L.: Chemical Thermodynamics, p. 90. Academic Press, London (1979)

    Google Scholar 

  19. Povey, M.J.W.: Ultrasonic Techniques for Fluids Characterization, p. 26. Academic Press, London (1997)

    Google Scholar 

  20. Hedwig, G.R., Høiland, H.: The partial molar isothermal compressions of the nucleosides adenosine, cytidine, and uridine in aqueous solution at T = (288.15 and 313.15) K. J. Solution Chem. 46, 849–861 (2017)

    Article  CAS  Google Scholar 

  21. Stimson, H.F.: Heat units and temperature scales for calorimetry. Am. J. Phys. 23, 614–622 (1955)

    Article  CAS  Google Scholar 

  22. Dyke, B.D., Hedwig, G.R.: The partial molar volumes at T = (288.15 to 313.15) K, and the partial molar heat capacities and expansions at T = 298.15 K of cytidine, uridine, and adenosine in aqueous solution. J. Chem. Thermodyn. 40, 957–965 (2008)

    Article  CAS  Google Scholar 

  23. Del Grosso, V.A., Mader, C.W.: Speed of sound in pure water. J. Acoust. Soc. Am. 52, 1442–1446 (1972)

    Article  Google Scholar 

  24. Kell, G.S.: Precise representation of volume properties of water at one atmosphere. J. Chem. Eng. Data 12, 66–69 (1967)

    Article  CAS  Google Scholar 

  25. Kell, G.S.: Density, thermal expansivity, and compressibility of liquid water from 0 to 150 °C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale. J. Chem. Eng. Data 20, 97–105 (1975)

    Article  CAS  Google Scholar 

  26. Bevington, P.R.: Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, New York (1969)

    Google Scholar 

  27. Hedwig, G.R., Jameson, G.B., Høiland, H.: Volumetric properties of the nucleoside thymidine in aqueous solution at T = 298.15 K and p = (10 to 100) MPa. J. Solution Chem. 43, 804–820 (2014)

    Article  CAS  Google Scholar 

  28. Chen, C.-T., Millero, F.J.: Reevaluation of Wilson’s sound-speed measurements for pure water. J. Acoust. Soc. Am. 60, 1270–1273 (1976)

    Article  Google Scholar 

  29. Hedwig, G.R., Høiland, H.: Thermodynamic properties of peptide solutions 20. Partial molar volumes and isothermal compressions for some tripeptides of sequence gly-X-gly (X = gly, ala, leu, asn, thr, and tyr) in aqueous solution at T = 298.15 K and p = (10–120) MPa. J. Chem. Thermodyn. 99, 30–39 (2016)

    Article  CAS  Google Scholar 

  30. Wagner, W., Pruss, A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387–535 (2002)

    Article  CAS  Google Scholar 

  31. Chen, C.-T., Fine, R.A., Millero, F.J.: The equation of state of pure water determined from sound speeds. J. Chem. Phys. 66, 2142–2144 (1977)

    Article  CAS  Google Scholar 

  32. Hedwig, G.R.: Thermodynamic properties of peptide solutions 3. Partial molar volumes and partial molar heat capacities of some tripeptides in aqueous solution. J. Solution Chem. 17, 383–397 (1988)

    Article  CAS  Google Scholar 

  33. Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolyte Solutions, 3rd edn. Reinhold, New York (1958)

    Google Scholar 

  34. Hedwig, G.R., Høiland, H.: Thermodynamic properties of peptide solutions: 7. Partial molar isentropic pressure coefficients of some dipeptides in aqueous solution. J. Solution Chem. 20, 1113–1127 (1991)

    Article  CAS  Google Scholar 

  35. Lo Surdo, A., Shin, C., Millero, F.J.: The apparent molal volume and adiabatic compressibility of some organic solutes in water at 25 °C. J. Chem. Eng. Data 23, 197–201 (1978)

    Article  CAS  Google Scholar 

  36. Sakurai, M., Nakamura, K., Nitta, K., Takenaka, N.: Sound velocities and apparent molar adiabatic compressions of alcohols in dilute aqueous solutions. J. Chem. Eng. Data 40, 301–310 (1995)

    Article  CAS  Google Scholar 

  37. Chalikian, T.V., Sarvazyan, A.P., Funck, T., Breslauer, K.J.: Partial molar volumes, expansibilities, and compressibilities of oligoglycines in aqueous solutions at 18–55 °C. Biopolymers 34, 541–553 (1994)

    Article  CAS  Google Scholar 

  38. Kharakoz, D.P.: Volumetric properties of proteins and their analogues in diluted water solutions. 2. Partial adiabatic compressibilities of amino acids at 15–70 °C. J. Phys. Chem. 95, 5634–5642 (1991)

    Article  CAS  Google Scholar 

  39. Millero, F.J., Lo Surdo, A., Shin, C.: The apparent molal volumes and adiabatic compressibilities of aqueous amino acids at 25 °C. J. Phys. Chem. 82, 784–792 (1978)

    Article  CAS  Google Scholar 

  40. Taulier, N., Chalikian, T.V.: Compressibility of protein transitions. Biochim. Biophys. Acta 1595, 48–70 (2002)

    Article  CAS  PubMed  Google Scholar 

  41. Lee, A., Chalikian, T.V.: Volumetric characterization of the hydration properties of heterocyclic bases and nucleosides. Biophys. Chem. 92, 209–227 (2001)

    Article  CAS  PubMed  Google Scholar 

  42. Buckin, V.A., Kankiya, B.I., Kazaryan, R.L.: Hydration of nucleosides in dilute aqueous solutions. Ultrasonic velocity and density measurements. Biophys. Chem. 34, 211–223 (1989)

    Article  CAS  PubMed  Google Scholar 

  43. Hedwig, G.R., Høiland, H.: Partial molar isentropic and isothermal compressions of the nucleosides adenosine, cytidine, and uridine in aqueous solution at 298.15 K. J. Chem. Eng. Data 56, 2266–2272 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Einar Hogseth for his technical expertise in the design and maintenance of the speed of sound equipment for measurements at high pressures. Two of us (G.R.H. and G.B.J.) are grateful for financial assistance from the Marsden Fund (Contract No. 09-MAU-140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin R. Hedwig.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedwig, G.R., Jameson, G.B. & Høiland, H. Volumetric Properties of the Nucleosides Adenosine, Cytidine, and Uridine in Aqueous Solution at T = (288.15 and 313.15) K and p = (10 to 100) MPa. J Solution Chem 48, 180–199 (2019). https://doi.org/10.1007/s10953-019-00856-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-019-00856-4

Keywords

Navigation