Abstract
Over the full molar fraction range, the density, viscosity, refractive index, conductivity and pH at the temperatures (298.15, 308.15, and 318.15) K, mixing enthalpy at T = 298.15 K, and 1H-NMR were measured for the binary mixtures of x N-methylimidazole (hereafter abbreviated to N-mim) + (1 − x) methanol, together with ab initio calculations. The thermodynamic parameters of activation for viscous flow were calculated and analyzed. The excess molar volume, viscosity deviation, deviation for the logarithm of viscosity, refractive index deviation and the excess refractive index, excess Gibbs energy of activation of viscous flow and the molar mixing enthalpy were calculated and fitted with a Redlich–Kister equation. The partial molar mixing enthalpies and the protons’ chemical shift changes of N-mim and methanol were calculated and explained. An increase in temperature leads to the excess molar volume becoming more negative, whereas the deviations for the logarithm of viscosity, viscosity deviation and the excess Gibbs energy of activation of viscous flow become less positive; in contrast the refractive index deviation and the excess refractive index become less positive at first and then become more positive. The activation of the viscous fluid is a more ordered process. The physicochemical properties, ab initio calculations, combined with the 1H-NMR results reveal that the molecular interactions among unlike molecules is stronger than that between like ones. There is an ionization process and hydrogen bond interaction between N-mim and methanol, the predominant interaction is N-mim:methanol = 1:1 hydrogen-bonded network, where the methyl groups of methanol and N-mim, respectively, are electron-withdrawing and electron-donating groups.
Similar content being viewed by others
References
Liu, J., Wang, Z., Levin, A., Emge, T.J., Rablen, P.R., Floyd, D.M., Knapp, S.: N-Methylimidazole promotes the reaction of homophthalic anhydride with imines. J. Org. Chem. 79, 7593–7599 (2014)
Yoganathan, S., Miller, S.J.: N-Methylimidazole-catalyzed synthesis of carbamates from hydroxamic acids via the Lossen rearrangement. Org. Lett. 15, 602–605 (2013)
Xu, A., Wang, J., Zhang, Y., Chen, Q.: Effect of alkyl chain length in anions on thermodynamic and surface properties of 1-butyl-3-methylimidazolium carboxylate ionic liquids. Ind. Eng. Chem. Res. 51, 3458–3465 (2012)
Yang, J.Z., Zhang, Q.G., Wang, B., Tong, J.: Study on the properties of smino acid ionic liquid EMIGly study on the properties of amino acid ionic liquid EMIGly. J. Phys. Chem. B 110, 22521–22524 (2006)
Ding, Z.D., Chi, Z., Gu, W.X., Gu, S.M., Wang, H.J.: Theoretical and experimental investigation of the interactions between [Emim]Ac and water molecules. J. Mol. Struct. 1015, 147–155 (2012)
Ma, X.X., Wei, J., Zhang, Q.B., Tian, F., Feng, Y.Y., Guan, W.: Prediction of thermophysical properties of acetate-based ionic liquids using semiempirical methods. Ind. Eng. Chem. Res. 52, 9490–9496 (2013)
Holbrey, J.D., Reichert, W.M., Tkatchenko, I., Bouajila, E., Walter, O., Tommasid, I., Rogers, R.D.: 1,3-Dimethylimidazolium-2-carboxylate: the unexpected synthesis of an ionic liquid precursor and carbene-CO2 adduct. Chem. Commun. 9, 28–29 (2003)
Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2083 (1999)
Earle, M.J., Sedden, K.R.: Ionic liquids. Green solvents for the future. Pure Appl. Chem. 72, 1391–1398 (2000)
Villano, S.M., Gianola, A.J., Eyet, N., Ichino, T., Kato, S., Bierbaum, V.M., Lineberger, W.C.: Thermochemical studies of N-methylpyrazole and N-methylimidazole. J. Phys. Chem. A 111, 8579–8587 (2007)
Mo, O., Yañez, M., Roux, M.V., Jiménez, P., Dávalos, J.Z., Ribeiro da Silva, M.A.V., Ribeiro da Silva, M.D.M.C., Matos, M.A.R., Amaral, L.M.P.F., Sánchez-Migallón, A., Cabildo, P., Claramunt, R., Elguero, J., Liebman, J.F.: Enthalpies of formation of n-substituted pyrazoles and imidazoles. J. Phys. Chem. A 103, 9336–9344 (1999)
Zaitseva, K.V., Varfolomeev, M.A., Novikov, V.B., Solomonov, B.N.: Enthalpy of cooperative hydrogen bonding in complexes of tertiary amines with aliphatic alcohols: calorimetric study. J. Chem. Thermodyn. 43, 1083–1090 (2011)
Lipkind, D., Plienrasri, C., Chickos, J.S.: A Study of the vaporization enthalpies of some 1-substituted imidazoles and pyrazoles by correlation-gas chromatography. J. Phys. Chem. B 114, 16959–16967 (2010)
Verevkin, S.P., Zaitsau, D.H., Emel’yanenko, V.N., Paulechka, Y.U., Blokhin, A.V., Bazyleva, A.B., Kabo, G.J.: Thermodynamics of ionic liquids precursors: 1-methylimidazole. J. Phys. Chem. B 115, 4404–4411 (2011)
Lipkind, D., Rath, N., Chickos, J.S., Pozdeev, V.A., Verevkin, S.P.: The vaporization enthalpies of 2- and 4-(N,N-dimethylamino)pyridine, 1,5-diazabicyclo[4.3.0]non-5-ene, 1,8-diazabicyclo[5.4.0]undec-7-ene, imidazo[1,2-a]pyridine and 1,2,4-triazolo[1,5-a]pyrimidine by correlation-gas chromatography. J. Phys. Chem. B 115, 8785–8796 (2011)
Dohnal, V., Řehák, K.: Determination of infinite dilution partial molar excess enthalpies and volumes for some ionic liquid precursors in water and methanol using tandem flow mixing calorimetry and vibrating-tube densimetry. J. Chem. Eng. Data 56, 3047–3052 (2011)
Gu, Z., Brennecke, J.F.: Volume expansivities and isothermal compressibilities of imidazolium and pyridinium-based ionic liquids. J. Chem. Eng. Data 47, 339–345 (2002)
Huang, R., Du, R., Liu, G., Zhao, X., Ye, S., Wu, G.: A combined experimental and theoretical approach to the study of hydrogen bond interaction in the binary mixture of N-methylimidazole with water. J. Chem. Thermodyn. 55, 60–66 (2012)
Guo, C., Fang, H., Huang, R.Y., Xu, H., Wu, G.H., Ye, S.Y.: Intermolecular interactions in binary system of 1-methylimidazole with methanol: a volumetric and theoretical investigation. Chem. Phys. Lett. 588, 97–101 (2013)
Sun, X.F., Zhao, X.Y., Hou, H.Y., Wang, L., Zhu, X.J., Zhang, T., Yang, J.: Physicochemical properties of a binary mixture of N-methylimidazole and methanol. J. Mol. Liq. 216, 440–449 (2016)
Zhu, X., Zhang, H., Li, H.: The structure of water in dilute aqueous solutions of ionic liquids: IR and NMR study. J. Mol. Liq. 197, 48–51 (2014)
Hou, H., Jiao, B., Li, Q., Lin, X., Liu, M., Shi, H., Wang, L., Liu, S.: Physicochemical properties, NMR, ab initio calculations and the molecular interactions in a binary mixture of N-methylimidazole and water. J. Mol. Liq. 257, 100–111 (2018)
González, B., Domínguez, A., Tojo, J.: Dynamic viscosities, densities, and speed of sound and derived properties of the binary systems acetic acid with water, methanol, ethanol, ethyl acetate and methyl acetate at T = (293.15, 298.15, and 303.15) K at atmospheric pressure. J. Chem. Eng. Data 49, 1590–1596 (2014)
Orge, B., Iglesias, M., Rodríguez, A., Canosa, J.M., Tojo, J.: Mixing properties of (methanol, ethanol, or 1-propanol) with (n-pentane, n-hexane, n-heptane and n-octane) at 298.15 K. Fluid Phase Equilib. 133, 213–217 (1997)
González, E.J., Alonso, L., Domínguez, Á.: Physical properties of binary mixtures of the ionic liquid 1-methyl-3-octylimidazolium chloride with methanol, ethanol, and 1-propanol at T = (298.15, 313.15, and 328.15) K and at p = 0.1 MPa. J. Chem. Eng. Data 51, 1446–1452 (2006)
Mrad, S., Lafuente, C., Hichri, M., Khattech, I.: Density, speed of sound, refractive index, and viscosity of the binary mixtures of N,N-dimethylacetamide with methanol and ethanol. J. Chem. Eng. Data (2001). https://doi.org/10.1021/acs.jced.5b01000
Rodríguez, A., Canosa, J., Tojo, J.: Physical properties of binary mixtures (dimethyl carbonate + alcohols) at several temperatures. J. Chem. Eng. Data 46, 1476–1486 (2001)
Iglesias, M., Orge, B., Tojo, J.: Refractive indices, densities and excess properties on mixing of the systems acetone + methanol + water and acetone + methanol + 1-butanol at 298.15 K. Fluid Phase Equilib. 126, 203–233 (1996)
Chen, S.P., Meng, X.X., Xie, G., Gao, S.L.: Thermochemistry of the ternary solid complex Er(C5H8NS2)3(C12H8N2). J. Chem. Eng. Data 50, 1204–1211 (2005)
Wang, Z.J., Chen, S.P., Di, Y.Y., Yang, Q., Gao, S.L.: Enthalpy of solution of 5-R-Na2bdc·nH2O (H2bdc = isophthalic acid, R = H, NH2, OH, CH3, NO2) at 298.15 K. J. Chem. Eng. Data 55, 5786–5790 (2010)
Zhang, R., Li, H., Lei, Y., Han, S.: All-atom molecular dynamic simulations and relative NMR spectra study of weak C– H···O contacts in amide–water systems. J. Phys. Chem. B 109, 7482–7487 (2005)
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta Jr., J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Staroverov, K.N., Kudin, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09 (Revision A.02). Gaussian, Inc., Wallingford, CT (2009)
Boys, S.F., Bernardi, F.: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970)
Reed, A.E., Curtiss, L.A., Weinhold, F.: Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem. Rev. 88, 899–926 (1988)
Biegler-König, F.: AIM2000. University of Applied Sciences, Bielefeld (2000)
Kapadi, U.R., Hundiwale, D.G., Patil, N.B., Lande, M.K.: Effect of temperature on excess molar volumes and viscosities of binary mixtures of ethylenediamine and water. Fluid Phase Equilib. 205, 267–274 (2003)
Guo, Z.H., Zhang, J.B., Zhang, T., Li, C.P., Zhang, Y.F., Bai, J.: Liquid viscosities, excess properties, and viscous flow thermodynamics of triethylene glycol + water mixtures at T = (298.15, 303.15, 308.15, 313.15, and 318.15) K. J. Mol. Liq. 165, 27–31 (2012)
Xu, Q., Sun, S., Lan, G., Xiao, J., Zhang, J., Wei, X.: Excess properties and spectral investigation for the binary system diethylene glycol dimethyl ether + water at T = (293.15, 298.15,303.15, 308.15, and 313.15) K. J. Chem. Eng. Data 60, 2–10 (2015)
Zarrougui, R., Dhahbi, M., Lemordant, D.: Transport and thermodynamic properties of ethylammonium nitrate–water binary mixtures: effect of temperature and composition. J. Solution Chem. 44, 686–702 (2015)
Wang, J., Tian, Y., Zhao, Y., Zhuo, K.: A volumetric and viscosity study for the mixtures of 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid with acetonitrile, dichloromethane, 2-butanone and N,N-dimethylformamide. Green Chem. 5, 618–622 (2003)
Pires, J., Timperman, L., Jacquemin, J., Balducci, A., Anouti, M.: Density, conductivity, viscosity, and excess properties of (pyrrolidinium nitrate-based protic ionic liquid + propylene carbonate) binary mixture. J. Chem. Thermodyn. 59, 10–19 (2013)
Reis, J.C.R., Lampreia, I.M.S., Santos, Â.F.S., Moita, M.L.C.J., Douhéret, G.: Refractive index of liquid mixtures: theory and experiment. Chem. Phys. Chem. 11, 3722–3733 (2010)
Brocos, P., Piñeiro, Á., Bravo, R., Amigo, A.: Refractive indices, molar volumes and molar refractions of binary liquid mixtures: concepts and correlations. Phys. Chem. Chem. Phys. 5, 550–557 (2003)
Iglesias-Otero, M.A., Troncoso, J., Carballo, E., Romaní, L.: Density and refractive index in mixtures of ionic liquids and organic solvents: correlations and predictions. J. Chem. Thermodyn. 40, 949–956 (2008)
Podgoršek, A., Jacquemin, J., Pádua, A.A.H., Costa Gomes, M.F.: Mixing enthalpy for binary mixtures containing ionic liquids. Chem. Rev. 116, 6075–6106 (2016)
Yan, X.J., Li, S.N., Zhai, Q.G., Jiang, Y.C., Hu, M.C.: Physicochemical properties for the binary systems of ionic liquids [Cnmim]Cl + N,N-dimethylformamide. J. Chem. Eng. Data 59, 1411–1422 (2014)
Dubey, G.P., Kumar, K.: Density, speed of sound, viscosity, excess properties, and Prigogine–Flory–Patterson (PFP) theory of binary mixtures of amine and alcohols. J. Chem. Eng. Data 61, 1967–1980 (2016)
Oswal, S.L., Desai, H.S.: Studies of viscosity and excess molar volume of binary mixtures: 1. Propylamine + 1-alkanol mixtures at 303.15 and 313.15 K. Fluid Phase Equilib. 149, 359–376 (1998)
González, J.A., Alonso, I., De La Fuente, I.G., Cobos, J.C.: Thermodynamics of ketone + amine mixtures. Part X. Excess molar enthalpies at 298.15 K for N,N, N-triethylamine + 2-alkanone systems. Characterization of tertiary amine + 2-alkanone, and of amino–ketone + n-alkane mixtures in terms of DISQUAC. Fluid Phase Equilibr. 356, 117–125 (2013)
Zhuo, K., Chen, Y., Chen, J., Bai, G., Wang, J.: Interactions of 1-butyl-3-methylimidazolium carboxylate ionic liquids with glucose in water: a study of volumetric properties, viscosity, conductivity and NMR. Phys. Chem. Chem. Phys. 13, 14542–14549 (2011)
Reichardt, C.: Solvent and Solvent Effects in Organic Chemistry, 3rd edn. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim (2003)
Catalan, J., Couto, A., Gornez, J., Saiz, J.L., Laynez, J.: Towards a solvent acidity scale: the calorimetry of the N-methyl imidazole probe. J. Chem. Soc. Perkin Trans. 2, 1181–1185 (1992)
Catalan, J., De Paz, J.L.G., Yaiiez, M., Claramunt, R.M., Lopez, C., Elguero, J., Anvia, F., Quian, J.H., Taagepera, M., Taft, R.W.: A theoretical and experimental study of the intrinsic basicities of methyldiazoles. J. Am. Chem. Soc. 112, 1303–1312 (1990)
Vreekamp, R., Castellano, D., Palomar, J., Ortega, J., Espiau, F., Fernández, L., Penco, E.: Thermodynamic behavior of the binaries 1-butylpyridinium tetrafluoroborate with water and alkanols: their interpretation using 1H NMR spectroscopy and quantum-chemistry calculations. J. Phys. Chem. B 115, 8763–8774 (2011)
Chen, Y., Cao, Y., Sun, X., Mu, T.: Hydrogen bonding interaction between acetate-based ionic liquid 1-ethyl-3-methylimidazolium acetate and common solvents. J. Mol. Liq. 190, 151–158 (2014)
Chen, Y., Cao, Y., Zhang, Y., Mu, T.: Hydrogen bonding between acetate- based ionic liquids and water: three types of IR absorption peaks and NMR chemical shifts change upon dilution. J. Mol. Struct. 1058, 244–251 (2014)
Gupta, S., Rafiq, S., Kundu, M., Sen, P.: Origin of strong synergism in weakly perturbed binary solvent system: a case study of primary alcohols and chlorinated methanes. J. Phys. Chem. B 116, 1345–1355 (2012)
Mizuno, K., Ochi, T., Shindo, Y.: Hydrophobic hydration of acetone probed by nuclear magnetic resonance and infrared: evidence for the interaction C-HOH2. J. Chem. Phys. 109, 9502–9507 (1998)
Mizunoa, K., Kimurab, Y., Morichikab, H., Nishimurab, Y., Shimadab, S., Maedab, S., Imafujib, S., Ochib, T.: Hydrophobic hydration of tert-butyl alcohol probed by NMR and IR. J. Mol. Liq. 85, 139–152 (2000)
Mizunoa, K.: Hydration of the CH groups in dimethyl sulfoxide probed by NMR and IR. J. Phys. Chem. B 104, 11001–11005 (2000)
Li, Q., Wu, G., Yu, Z.: The role of methyl group in the formation of hydrogen bond in DMSO–methanol mixtures. J. Am. Chem. Soc. 128, 1438–1439 (2006)
Gupta, S., Parida, K.N., Mukherjee, P., Sen, P.: Mixed solvent chemistry through synergistic solvation: structure, property and function of t-butanol–dichloromethane binary solvent mixtures. J. Solution Chem. 46, 461–475 (2017)
Gupta, S., Chakraborty, A., Sen, P.: Elucidation of intriguing methanol–dichloromethane binary solvent mixture: synergistic effect, analytical modeling, NMR and photo-induced electron transfer studies. J. Mol. Liq. 223, 274–282 (2016)
Arunan, E., Desiraju, G.R., Klein, R.A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D.C., Crabtree, R.H., Dannenberg, J.J., Hobza, P., Kjaergaard, H.G., Legon, A.C., Mennucci, B., Nesbitt, D.J.: Definition of the hydrogen bond (IUPAC recommendations 2011). Pure Appl. Chem. (2012). https://doi.org/10.1351/PAC-REC-10-01-02
Li, Q.Z., Li, R., Liu, X.F., Li, W.Z., Cheng, J.B.: Concerted Interaction between pnicogen and halogen bonds in XCl–FH2P–NH3 (X = F, OH, CN, NC, and FCC). Chem. Phys. Chem. 13, 1205–1212 (2012)
Koch, U., Popelier, P.L.A.: Characterization of C-H-O hydrogen bonds on the basis of the charge density. J. Phys. Chem. 99, 9747–9754 (1995)
Arnold, W.D., Oldfield, E.: The chemical nature of hydrogen bonding in proteins via NMR: J-couplings, chemical shifts, and AIM theory. J. Am. Chem. Soc. 122, 12835–12841 (2000)
Acknowledgements
The authors are grateful to the National Natural Science Foundation of China (No. 21603169), Scientific Research Fund of the Science and Technology Department of Shaanxi Provincial Government (No. 2016JM5049), and the College Students innovation Project (No. 201610709028) for financial supports, and are grateful to Dr. Baojian Liu for his assistance in the NMR measurements.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Hou, H., Jiao, B., Li, Q. et al. Physicochemical Properties, 1H-NMR, Ab Initio Calculations and Molecular Interaction in Binary Mixtures of N-methylimidazole with Methanol. J Solution Chem 47, 1875–1901 (2018). https://doi.org/10.1007/s10953-018-0824-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-018-0824-y