Abstract
The objective of this review in two parts is to present a compact overview of the development of the solubility parameter \(\left( {\delta_{i} } \right)\) concept: from the seminal work of van Laar in 1910, to the contributions of Scatchard, Hildebrand, Scott and Prausnitz, leading finally to the generalized multi-component (multi-dimensional) cohesion parameters, with the Hansen solubility parameter being the most prominent representative. In this first part, physico-chemical aspects concerning \(\delta_{i}\)-related models in solution chemistry and chemical engineering will be presented, and recent theoretical efforts in this field, that is, equation-of-state approaches and computer simulation methods for the estimation of solubility parameters, will be indicated. Indeed, prediction of thermodynamic properties of liquid nonelectrolyte solutions from properties of the corresponding pure constituents has come a long way since the classic studies by Hildebrand and by Scatchard leading to regular solution theory (RST), in which the solubility parameter is the property of central importance. Selected aspects of RST will be discussed, including the influence of T and of P on \(\delta_{i}\) and their reliable estimation, thereby clearing up misconceptions and pointing out pitfalls not generally recognized. Extending the dicussion to supercritical conditions, the use of solubility parameters in supercritical fluid (SCF) technologies will be indicated, focusing on practical implications of some of the unique phenomena happening in the near supercritical region, which provide the basis of SCF extraction in industries devoted to food-processing, nutraceuticals, pharmaceuticals and biotechnology.
Similar content being viewed by others
Notes
Max Margules was an Austrian physicist. Born in Brody, Galicia, a former crown-land of the Austro-Hungarian Empire, on April 23, 1856, he started his studies in mathematics, physics and chemistry at the University of Wien (Vienna), Austria, in 1872. Among his teachers were Ludwig Boltzmann and Josef Loschmidt. After a few years as Assistant at the Central Institute of Meteorology in Wien, he went to Berlin for additional studies in mathematical physics (1879/1880), and was habilitated at the University of Wien after his return. However, in 1882 Margules resigned from this academic position and rejoined the Central Institute of Meteorology. During the first years at this institution, he continued to pursue physical and physical–chemical research parallel to his work on theoretical meteorology. In 1906 he voluntarily retired at the age of fifty on a very modest pension. This was also the year of his last meteorological publication, dedicated to the theory of storms: Margules, M.: Zur Sturmtheorie. Meteorolog. Z. 23, 481–497 (1906). His small pension and the inflation after the end of World War I led to a life in poverty, which was compounded by the general state of malnutrition of the Austrian population and his refusal to accept help from colleagues and/or the Austrian Meteorological Society (he was awarded the Hann Medal in 1919 but declined the associated honorarium). Max Margules died of starvation in Perchtoldsdorf near Wien (Vienna), Austria, on October 4, 1920. He contributed significantly and lastingly to meteorology and thermodynamics [55]. Obituaries were prepared by F. M. Exner (Meteorolog. Z. 37, 322–324 (1920)) and E. Gold (Nature 106, 286–287 (1920)).
At low temperatures, the second virial coefficient \(B_{i}\) is negative. As a rough estimate, \(B_{i}\) for vapors of common organic liquids at \(T_{{{\text{bp,}}i}}\) is in the range of about − 1000 cm3·mol−1 to − 2000 cm3·mol−1. With increasing temperature \(B_{i}\) becomes less negative, i.e., \({{{\text{d}}B_{i} } \mathord{\left/ {\vphantom {{{\text{d}}B_{i} } {{\text{d}}T}}} \right. \kern-0pt} {{\text{d}}T}}\) is positive, and at the Boyle temperature \(B_{i} = 0\). For simple fluids, \(T_{{{\text{Boyle,}}i}}\) corresponds to a reduced temperature of ca. \(T_{{{\text{r}},i}} = 2.7\). At higher temperatures, repulsive intermolecular interactions dominate and \(B_{i}\) becomes positive, increasing slowly with increasing T. Eventually, \(B_{i}\) will pass through a very flat maximum, though such a maximum has only been observed for fluids with very low critical temperatures, such as helium and hydrogen.
This terminology is not related to the concept of residual properties presented below and in some detail in Appendix 2.
\(\left( {\frac{\text{cal}}{{{\text{cm}}^{3} {\cdot} {\text{atm}}}}} \right)^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}} = \left( {\frac{4.184}{{10^{ - 6} \times 1.01325 \times 10^{5} }}} \right)^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}} \left( {\frac{\text{J}}{{{\text{m}}^{3} {\cdot} {\text{Pa}}}}} \right)^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}} = 6.42595\left( {\frac{\text{J}}{{{\text{m}}^{3} {\cdot} {\text{Pa}}}}} \right)^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}} .\)
The frequently given reference quotation “Berthelot, D.: Sur une méthode purement physique pour la détermination des poids moléculaires des gaz et des poids atomiques des leurs éléments. J. Phys. 8, 263–274 (1899)”, is incorrect: in this article Berthelot uses the van der Waals EOS (cf. p. 265, Eq. 2).
At the critical point \(\left( {T_{\text{c}} ,P_{\text{c}} } \right)\), \(\gamma_{V}\) and the slope of the vapor-pressure curve \({{{\text{d}}P_{\sigma } } \mathord{\left/ {\vphantom {{{\text{d}}P_{\sigma } } {{\text{d}}T}}} \right. \kern-0pt} {{\text{d}}T}} = \left( {{{\partial P} \mathord{\left/ {\vphantom {{\partial P} {\partial T}}} \right. \kern-0pt} {\partial T}}} \right)_{\sigma } \equiv \gamma_{\sigma }\) become equal. Even here is \(T\gamma_{V}\) significantly larger than \(P = P_{\text{c}}\): \({\text{Ar}}:T_{\text{c}} \gamma_{{V,{\text{c}}}} = 27.15{\text{ MPa}}\), \(P_{\text{c}} = 4.90{\text{ MPa}}\); \({\text{CCl}}_{ 4} :T_{\text{c}} \gamma_{{V,{\text{c}}}} = 32.27{\text{ MPa}}\), \(P_{\text{c}} = 4.56{\text{ MPa}}\); \(n{\text{ - C}}_{ 7} {\text{H}}_{ 1 6} :T_{\text{c}} \gamma_{{V,{\text{c}}}} = 18.91{\text{ MPa}}\), \(P_{\text{c}} = 2.74{\text{ MPa}}\); \({\text{C}}_{ 6} {\text{H}}_{ 6} :T_{\text{c}} \gamma_{{V,{\text{c}}}} = 34.85{\text{ MPa}}\), \(P_{\text{c}} = 4.90{\text{ MPa}}\); \({\text{H}}_{ 2} {\text{O}}:T_{\text{c}} \gamma_{{V,{\text{c}}}} = 170.83{\text{ MPa}}\), \(P_{\text{c}} = 22.06{\text{ MPa}}\).
The SI unit for \(\alpha_{\text{pol}}\) is \({\text{C}}^{2} {\cdot} {\text{J}}^{ - 1} {\cdot} {\text{m}}^{2} = {\text{F}} {\cdot} {\text{m}}^{2}\) [406], but values of this scalar property known as average molecular polarizability are commonly quoted as the value \({{\alpha_{\text{pol}} } \mathord{\left/ {\vphantom {{\alpha_{\text{pol}} } {4\pi }}} \right. \kern-0pt} {4\pi }}\varepsilon_{0}\), which has the dimension of a volume \(\left( {{\text{m}}^{3} } \right)\) since the permittivity of vacuum (or the electric constant) is \(\varepsilon_{0} = 8.854{ 187 } \ldots \times 1 0^{ - 12} {\text{ C}}^{2}{ \cdot} {\text{J}}^{ - 1} {\cdot} {\text{m}}^{ - 1}\), with \({\text{C}}^{2} {\cdot} {\text{J}}^{ - 1} {\cdot} {\text{m}}^{ - 1} = {\text{F}}{\cdot} {\text{m}}^{ - 1}\). The quantity \({{\alpha _{{{\text{pol}}}} } \mathord{\left/ {\vphantom {{\alpha _{{{\text{pol}}}} } {4\pi \varepsilon _{0} }}} \right. \kern-\nulldelimiterspace} {4\pi \varepsilon _{0} }}\) is thus frequently called the polarizability volume; most conveniently, the tabulated numerical values [396] are directly comparable with values given in older tables that report molecular polarizabilities in units \(10^{ - 24} {\text{ cm}}^{3}\) or Å3 (Å = 10−8 cm).
References
Prausnitz, J.M., Lichtenthaler, R.N., de Azevedo, E.G.: Molecular Thermodynamics of Fluid Phase Equilibria, 3rd edn. Prentice Hall PTR, Upper Saddle River (1999)
Kister, H.Z.: Distillation Operation. McGraw-Hill, New York (1990)
Kister, H.Z.: Distillation Design. McGraw-Hill, New York (1992)
Kister, H.Z.: Distillation Troubleshooting. McGraw-Hill, New York (2006)
McCabe, W.L., Smith, J.C., Harriott, P.: Unit Operations of Chemical Engineering, 7th edn. McGraw-Hill, New York (2006)
Letcher, T.M. (ed.): Developments and Applications in Solubility. The Royal Society of Chemistry, Cambridge (2007)
Seader, J.D., Henley, E.J., Roper, D.K.: Separation Process Principles with Applications Using Process Simulators, 4th edn. Wiley, New Jersey (2016)
Sandler, S.I.: Chemical, Biochemical, and Engineering Thermodynamics, 5th edn. Wiley, New York (2017)
Van Ness, H.C., Abbott, M.M.: Classical Thermodynamics of Nonelectrolyte Solutions; with Applications to Phase Equilibria. McGraw–Hill Book Company, New York (1982)
Smith, J.M., Van Ness, H.C., Abbott, M.M., Swihart, M.T.: Introduction to Chemical Engineering Thermodynamics, 8th edn. McGraw-Hill Education, New York (2018)
Popper, K.R.: The Logic of Scientific Discovery. Routledge, London (2002)
van Kloster, H.S.: J. J. van Laar: pioneer in chemical thermodynamics. J. Chem. Educ. 39, 74–76 (1962)
Wisniak, J.: Johannes Jacobus van Laar: unappreciated scientist. Chem. Educ. 5, 335–339 (2000)
van der Waals, J.D.: Over de continuiteit van den gas- en vloeistoftoestand. Doctoral thesis in wis- en natuurkunde. University of Leiden, The Netherlands (1873) For an English translation, On the Continuity of the Gaseous and Liquid States, see Rowlinson, J.S. (ed.), North-Holland, Amsterdam (1988)
Kipnis, A.Y., Yavelov, B.E., Rowlinson, J.S.: Van der Waals and Molecular Science. Clarendon Press, Oxford (1996)
Rowlinson, J.S.: Cohesion. A Scientific History of Intermolecular Forces. Cambridge University Press, Cambridge (2002)
van der Waals, J.D.: Molekulartheorie eines Körpers, der aus zwei verschiedenen Stoffen besteht. Z. physik. Chem. 5, 133–173 (1890)
Kohler, F., Wilhelm, E., Posch, H.: Recent advances in the physical chemistry of the liquid state. Adv. Molec. Relax. Processes 8, 193–239 (1976)
Rowlinson, J.S.: Legacy of van der Waals. Nature 244, 414–417 (1973)
Pitzer, K.S.: Correponding states for perfect liquids. J. Chem. Phys. 7, 583–590 (1939)
Dieterici, C.: Über den kritischen Zustand. Ann. Physik u. Chem. Neue Folge 69, 685–705 (1899)
MacDougall, F.H.: The equation of state for gases and liquids. J. Am. Chem. Soc. 38, 528–555 (1916)
MacDougall, F.H.: On the Dieterici equation of state. J. Am. Chem. Soc. 39, 1229–1235 (1917)
Sadus, R.J.: Equations of state for fluids: the Dieterici approach revisited. J. Chem. Phys. 115, 1460–1462 (2001)
Sadus, R.J.: The Dieterici alternative to the van der Waals approach for equations of state: second virial coefficienrs. Phys. Chem. Chem. Phys. 4, 919–921 (2002)
Sadus, R.J.: New Dieterici-type equations of state for fluid phase equilibria. Fluid Phase Equil. 212, 31–39 (2003)
Román, F.L., Mulero, A., Cuadros, F.: Simple modifications of the van der Waals and Dieterici equations of state: vapour–liquid equilibrium properties. Phys. Chem. Chem. Phys. 6, 5402–5409 (2004)
Balasubramanian, R., Gunavathi, K., Jegan, R., Roobanguru, D.: Open. J. Mod. Phys. 1, 34–40 (2014)
Barton, A.F.M.: CRC Handbook of Solubility Parameters and other Cohesion Parameters, 2nd edn. CRC Press, Boca Raton (1991)
Marcus, Y.: Solvent Properties and Selective Solvation. Marcel Dekker, New York (2002)
Hansen, C.M.: Hansen Solubility Parameters. A User’s Handbook, 2nd edn. CRC Press, Boca Raton (2007)
Goodwin, A.R.H., Sandler, S.I.: Mixing and combining rules. In: Goodwin, A.R.H., Sengers, J.V., Peters, C.J. (eds.) Applied Thermodynamics of Fluids, pp. 84–134. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2010)
Kontogeorgis, G.M., Folas, G.K.: Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories. Wiley, Chichester (2010)
Wilhelm, E.: Internal energy and enthalpy: introduction, concepts and selected applications. In: Wilhelm, E., Letcher, T.M. (eds.) Enthalpy and Internal Energy: Liquids, Solutions and Vapours, pp. 1–61. The Royal Society of Chemistry/IACT, Cambridge (2018)
Abdulagatov, I.M., Magee, J.W., Polikhronidi, N.G., Batyrova, R.G.: Internal pressure and internal energy of saturated and compressed phases. In: Wilhelm, E., Letcher, T.M. (eds.) Enthalpy and Internal Energy: Liquids, Solutions and Vapours, pp. 411–446. The Royal Society of Chemistry/IACT, Cambridge (2018)
Wilhelm, E.: Solubility parameters: a brief review. In: Wilhelm, E., Letcher, T.M. (eds.) Enthalpy and Internal Energy: Liquids, Solutions and Vapours, pp. 447–476. The Royal Society of Chemistry/IACT, Cambridge (2018)
Marcus, Y.: Internal pressure of liquids: a review. In: Wilhelm, E., Letcher, T.M. (eds.) Enthalpy and Internal Energy: Liquids, Solutions and Vapours, pp. 477–504. The Royal Society of Chemistry/IACT, Cambridge (2018)
Galitzine, B.: Über das Dalton‘sche Gesetz. III. Theil: Theoretische Untersuchungen. Ann. Physik u. Chem. Neue Folge 41, 770–800 (1890)
Berthelot, D.: Sur le mélange des gaz. C. R. Seances Acad. Sci. 126, 1703–1706 (1898)
Berthelot, D.: Sur le mélange des gaz. C. R. Seances Acad. Sci. 126, 1857–1858 (1898)
London, F.: The general theory of molecular forces. Trans. Faraday Soc. 33, 8–26 (1937)
Kohler, F., Fischer, J., Wilhelm, E.: Intermolecular force parameters for unlike pairs. J. Mol. Struct. 84, 245–250 (1982)
Maitland, G.C., Rigby, M., Smith, E.B., Wakeham, W.A.: Intermolecular Forces: Their Origin and Determination. Clarendon Press, Oxford (1981)
Stone, A.: The Theory of Intermolecular Forces, 2nd edn. Oxford University Press, Oxford (2013)
Lorentz, H.A.: Über die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Ann. Physik u. Chem. Neue Folge 12, 127–136 (1881). Addendum: ibid., pp. 660–661
van Laar, J.J.: Die Thermodynamik in der Chemie. S.L. van Looy & H. Gerlings, Amsterdam and Wilhelm Engelmann, Leipzig (1893)
van Laar, J.J.: Sechs Vorträge über das thermodynamische Potential und seine Anwendungen auf chemische und physikalische Gleichgewichtsprobleme, eingeleitet durch zwei Vorträge über nichtverdünnte Lösungen und über den osmotischen Druck. F. Vieweg und Sohn, Braunschweig (1906)
van Laar, J.J.: Über Dampfspannungen von binären Gemischen. Z. Phys. Chem. 72, 723–751 (1910)
van Laar, J.J.: Über den Zusammenhang zwischen der Abweichung der Dampfdruckkurve von binären Gemischen normaler Stoffe von der geraden Linie, und der Mischungswärme in der flüssigen Phase. Z. Phys. Chem. 137A, 421–446 (1928)
Dolezalek, F.: Zur Theorie der binären Gemische und konzentrierten Lösungen. III. Erwiderung an die Herren T. S. Patterson und J. J. van Laar. Z. Phys. Chem. 83, 40–44 (1913)
van Laar, J.J.: Zur Theorie der Dampfspannungen von binären Gemischen. Erwiderung an Herrn F. Dolezalek. Z. Phys. Chem. 83, 599–608 (1913)
Wilhelm, E.: Solubilities, fugacities and all that in solution chemistry. J. Solution Chem. 44, 1004–1061 (2015)
Margules, M.: Über die Zusammensetzung der gesättigten Dämpfe von Mischungen. Sitzungsber. Kaiserl. Akad. Wiss. Wien, mathem.-naturwiss. Cl. Abt. IIa 104, 1243–1278 (1895)
Tomiska, J., Neckel, A.: The Margules concept: the basis of modern algebraic representations of thermodynamic excess properties. J. Phase Equilib. 17, 11–20 (1996)
Wisniak, J.: Max Margules—a cocktail of meteorology and thermodynamics. J. Phase Equilib. 24, 103–109 (2003)
Wohl, K.: Thermodynamic evaluation of binary and ternary liquid systems. Trans. AIChE 42, 215–249 (1946)
Wohl, K.: Thermodynamic evaluation of binary and ternary liquid systems. Chem. Eng. Progress 49, 218–219 (1953)
van Laar, J.J., Lorenz, R.: Berechnung von Mischungswärmen kondensierter Systeme. Z. Anorg. Allg. Chem. 146, 42–45 (1925)
Hildebrand, J.H., Scott, R.L.: The Solubility of Nonelectrolytes, 3rd edn. Reinhold Publishing Corporation, New York (1950)
van Laar, J.J: Die Thermodynamik einheitlicher Stoffe und binärer Gemische, mit Anwendungen auf verschiedene physikalisch-chemische Probleme. P. Noordhoff, Groningen und Batavia (1935)
Drossbach, P.: Über die Theorie binärer Gemische von van Laar. Z. Anorg. Allg. Chem. 234, 298–306 (1937)
Pitzer, K.S.: Joel Henry Hildebrand, 1881–1983. Biogr. Mem. Natl. Acad. Sci. 62, 224–257 (1993)
Hildebrand, J.H.: A quantitative treatment of deviations from Raoult’s law. Proc. Natl. Acad. Sci. USA 13, 267–272 (1927)
Hildebrand, J.H.: Solubility. XII. Regular solutions. J. Am. Chem. Soc. 51, 66–80 (1929)
Scatchard, G.: Equilibria in non-electrolyte solutions in relation to the vapor pressures and densities of the components. Chem. Rev. 8, 321–333 (1931)
Edsall, J.T., Stockmayer, W.: George Scatchard, 1892–1973. Biogr. Mem. Natl. Acad. Sci. 52, 334–377 (1980)
Scatchard, G.: The attraction of proteins for small molecules and ions. Ann. N. Y. Acad. Sci. 51, 660–672 (1949)
Scatchard, G.: Change of volume on mixing and the equations for non-electrolyte mixtures. Trans. Faraday Soc. 33, 160–166 (1937)
Scatchard, G.: Equilibrium in non-electrolyte mixtures. Chem. Rev. 44, 7–35 (1949)
Hildebrand, J.H., Wood, S.E.: The derivation of equations for regular solutions. J. Chem. Phys. 1, 817–822 (1933)
Hildebrand, J.H., Scott, R.L.: Regular Solutions. Prentice Hall, Englewood Cliffs (1962)
Hildebrand, J.H., Prausnitz, J.M., Scott, R.L.: Regular and Related Solutions: The Solubility of Gases, Liquids, and Solids. Van Nostrand Reinhold Company, New York (1970)
Hildebrand, J.H.: A history of solution theory. Annu. Rev. Phys. Chem. 32, 1–23 (1981)
Ely, J.F.: The corresponding-states principle. In: Goodwin, A.R.H., Sengers, J.V., Peters, C.J. (eds.) Applied Thermodynamics of Fluids, pp. 135–171. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2010)
Wilhelm, E.: Volumetric properties: introduction, concepts and selected applications. In: Wilhelm, E., Letcher, T.M. (eds.) Volume Properties: Liquids, Solutions and Vapours, pp. 1–72. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2015)
Economou, I.G.: Cubic and generalized van der Waals equations of state. In: Goodwin, A.R.H., Sengers, J.V., Peters, C.J. (eds.) Applied Thermodynamics of Fluids, pp. 53–83. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2010)
Span, R., Lemmon, E.W.: Volumetric properties from multiparameter equations of state. In: Wilhelm, E., Letcher, T.M. (eds.) Volume Properties: Liquids, Solutions and Vapours, pp. 125–151. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2015)
Trusler, J.P.M.: Virial coefficients. In: Wilhelm, E., Letcher, T.M. (eds.) Volume Properties: Liquids, Solutions and Vapours, pp. 152–162. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2015)
Dymond, J.H., Marsh, K.N., Wilhoit, R.C., Wong, K.C.: Virial coefficients of pure gases. In: Frenkel, M., Marsh, K.N. (eds.) Landolt-Börnstein, New Series; Group IV: Physical Chemistry, Virial Coefficients of Pure Gases and Mixtures, vol. 21A. Springer, Heidelberg (2002)
Dymond, J.H., Marsh, K.N., Wilhoit, R.C.: Virial coefficients of mixtures. In: Frenkel, M., Marsh, K.N. (eds.) Landolt-Börnstein, New Series; Group IV: Physical Chemistry, Virial Coefficients of Pure Gases and Mixtures, vol. 21B. Springer, Heidelberg (2003)
Haar, L., Gallagher, J.S., Kell, G.S.: NBS/NRC Steam Tables (NSRDS). Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units. Hemisphere Publishing Corporation, New York (1984)
Hill, P.G., MacMillan, R.D.C.: Virial equation for light and heavy water. Ind. Eng. Chem. Res. 27, 874–882 (1988)
Wagner, W., Pruß, A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387–535 (2002)
Wypych, G. (ed.): Handbook of Solvents, Vol. 1: Properties, 2nd edn. ChemTec Publishing/Elsevier Science Limited, Toronto (2014)
Abbott, S., Hansen, C.M., Yamamoto, H., Valpey III, R.S.: Hansen Solubility Parameters in Practice Complete with eBook Software and Data, 5th edn. Hansen-Solubility.com (2015)
Majer, V., Svoboda, V.: Enthalpies of Vaporization of Organic Compounds. A Critical Review and Data Compilation. Blackwell Scientific Publications/IUPAC, Oxford (1985)
Tamir, A., Tamir, E., Stephan, K.: Heats of Phase Change of Pure Components and Mixtures. Elsevier, Amsterdam (1983)
Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids, 5th edn. McGraw-Hill, New York (2001)
Dortmund Data Bank Software and Separation Technology: http://www.ddbst.de
Wilhoit, R.C., Marsh, K.N., Hong, X., Gadalla, N., Frenkel, M.: Densities of aliphatic hydrocarbons–alkanes. In: Marsh, K.N. (ed.) Landolt–Börnstein, New Series; Group IV: Physical Chemistry, vol. 8B. Springer, Berlin (1996)
Wilhoit, R.C., Marsh, K.N., Hong, X., Gadalla, N., Frenkel, M.: Densities of aliphatic hydrocarbons—alkenes, alkadienes, alkynes, and miscellaneous compounds. In: Marsh, K.N. (ed.) Landolt–Börnstein, New Series; Group IV: Physical Chemistry, vol. 8C. Springer, Berlin (1996)
Wilhoit, R.C., Hong, X., Frenkel, M., Hall, K.R.: Densities of monocyclic hydrocarbons. In: Hall, K.R., Marsh, K.N. (eds.) Landolt-Börnstein, New Series; Group IV: Physical Chemistry, vol. 8D. Springer, Berlin (1997)
Wilhoit, R.C., Hong, X., Frenkel, M., Hall, K.R.: Densities of aromatic hydrocarbons. In: Hall, K.R., Marsh, K.N. (eds.) Landolt-Börnstein, New Series; Group IV: Physical Chemistry, vol. 8E. Springer, Berlin (1998)
Wilhoit, R.C., Hong, X., Frenkel, M., Hall, K.R.: Densities of polycyclic hydrocarbons. In: Hall, K.R., Marsh, K.N. (eds.) Landolt-Börnstein, New Series; Group IV: Physical Chemistry, vol. 8F. Springer, Berlin (1998)
Frenkel, M., Hong, X., Wilhoit, R.C., Hall, K.R.: Densities of alcohols. In: Hall, K.R., Marsh, K.N. (eds.) Landolt-Börnstein, New Series; Group IV: Physical Chemistry, vol. 8G. Springer, Berlin (1998)
Frenkel, M., Hong, X., Wilhoit, R.C., Hall, K.R.: Densities of esters and ethers. In: Hall, K.R., Marsh, K.N. (eds.) Landolt-Börnstein, New Series; Group IV: Physical Chemistry, vol. 8H. Springer, Berlin (2001)
Frenkel, M., Hong, X.: Dong, Q, Yan, X, Chirico, R.D.: Densities of phenols, aldehydes, ketones, carboxylic acids, amines, nitriles, and nitrohydrocarbons. In: Hall, K.R., Marsh, K.N. (eds.) Landolt-Börnstein, New Series; Group IV: Physical Chemistry, vol. 8I. Springer, Berlin (2002)
Frenkel, M., Hong, X.: Dong, Q, Yan, X, Chirico, R.D.: Densities of halohydrocarbons. In: Frenkel, M., Marsh, K.N. (eds.) Landolt-Börnstein, New Series; Group IV: Physical Chemistry, vol. 8J. Springer, Berlin (2003)
Funk, E.W., Prausnitz, J.M.: Thermodynamic properties of liquid mixtures: aromatic-saturated hydrocarbon systems. Ind. Eng. Chem. 62(9), 8–15 (1970)
Robinson, R.L., Chao, K.-C.: A correlation of vaporization equilibrium ratios for gas processing systems. Ind. Eng. Chem. Process Des. Dev. 10, 221–229 (1971)
Martin, A., Newburger, J., Adjei, A.: Extended Hildebrand solubility approach: solubility of theophylline in polar binary solvents. J. Pharm. Sci. 69, 487–491 (1980)
Adjei, A., Newburger, J., Martin, A.: Extended Hildebrand approach: solubility of caffeine in dioxane–water mixtures. J. Pharm. Sci. 69, 659–661 (1980)
Martin, A., Paruta, A.N., Adjei, A.: Extended Hildebrand solubility approach: methylxanthines in mixed solvents. J. Pharm. Sci. 70, 1115–1120 (1981)
Martin, A., Wu, P.L., Adjei, A., Mehdizadeh, M., James, K.C., Metzler, C.: Extended Hildebrand solubility approach: testosterone and testosterone propionate in binary solvents. J. Pharm. Sci. 71, 1334–1340 (1982)
Martin, A., Wu, P.L., Velásquez, T.: Extended Hildebrand solubility approach: sulfonamides in binary and ternary solvents. J. Pharm. Sci. 74, 277–282 (1985)
Martin, A., Bustamante, P.: Physical Pharmacy: Chemical Principles in the Pharmaceutical Sciences, 4th edn. Lippincott Williams & Wilkins, Philadelphia, PA (1993)
Bustamante, P., Escalera, B., Martin, A., Selles, E.: A modification of the extended Hildebrand approach to predict the solubility of structurally related drugs in solvent mixtures. J. Pharm. Pharmacol. 45, 253–257 (1993)
Peña, M.Á., Reíllo, A., Escalera, B., Bustamante, P.: Solubility parameter of drugs for predicting the solubility profile type within a wide polarity range in solvent mixtures. Int. J. Pharm. 321, 155–161 (2006)
Sotomayor, R.G., Holguín, A.R., Cristancho, D.M., Delgado, D.R., Martinez, F.: Extended Hildebrand solubility approach applied to piroxicam in ethanol + water mixtures. J. Mol. Liq. 180, 34–38 (2013)
Cárdenas, Z.J., Jiménez, D.M., Delgado, D.R., Peña, M.Á., Martinez, F.: Extended Hildebrand solubility approach applied to some sulphonamides in propylene glycol + water mixtures. Phys. Chem. Liq. 53, 763–775 (2015)
Delgado, D.R., Peña, M.Á., Martinez, F.: Extended Hildebrand solubility approach applied to some sulphapyrimidines in some methanol (1) + water (2) mixtures. Phys. Chem. Liq. 56, 176–188 (2018)
Huggins, M.L.: Solutions of long chain compounds. J. Chem. Phys. 9, 440 (1941)
Huggins, M.L.: Some properties of solutions of long-chain compounds. J. Phys. Chem. 46, 151–158 (1942)
Huggins, M.L.: Thermodynamic properties of solutions of long-chain compounds. Ann. N. Y. Acad. Sci. 43, 1–32 (1942)
Huggins, M.L.: Theory of solutions of high polymers. J. Am. Chem. Soc. 64, 1712–1719 (1942)
Huggins, M.L.: Physical Chemistry of High Polymers. Wiley, New York (1958)
Flory, P.J.: Thermodynamics of high polymer solutions. J. Chem. Phys. 9, 660–661 (1941)
Flory, P.J.: Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 51–61 (1942)
Flory, P.J.: Thermodynamics of heterogeneous polymers and their solutions. J. Chem. Phys. 12, 425–438 (1944)
Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953)
Wolf, B.A.: Making Flory-Huggins practical: thermodynamics of polymer-containing mixtures. Adv. Polym. Sci. 238, 1–66 (2011)
Abrams, D.S., Prausnitz, J.M.: Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J. 21, 116–128 (1975)
Guggenheim, E.A.: The Theory of the Equilibrium Properties of Some Simple Classes of Mixtures, Solutions and Alloys. Clarendon Press, London (1952)
Stavermann, A.J.: The entropy of high polymer solutions: generalization of formulae. Rec. Trav. Chim. Pays-Bas 69, 163–174 (1950)
Bondi, A.: Physical Properties of Molecular Crystals, Liquids, and Glasses. Wiley, New York (1968)
Gmehling, J., Kolbe, B., Kleiber, M., Rarey, J.: Chemical Thermodynamics for Process Simulation. Wiley-VCH Verlag, Weinheim (2012)
Wilson, G.M.: Vapor–liquid equilibrium. XI. A new expression for the excess free energy of mixing. J. Am. Chem. Soc. 86, 127–130 (1964)
Scatchard, G., Wilson, G.M.: Vapor–liquid equilibrium. XIII. The system water–butyl glycol from 5 to 85°. J. Am. Chem. Soc. 86, 133–137 (1964)
Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14, 135–144 (1968)
Renon, H., Prausnitz, J.M.: Derivation of the three-parameter Wilson equation for the excess Gibbs energy of liquid mixtures. AIChE J. 15, 785 (1969)
Maurer, G., Prausnitz, J.M.: On the derivation and extension of the UNIQUAC equation. Fluid Phase Equilib. 2, 91–99 (1978)
Anderson, T.F., Prausnitz, J.M.: Application of the UNIQUAC equation to calculation of multicomponent phase equilibria. 1. Vapor–liquid equilibria. Ind. Eng. Chem. Process Des. Dev. 17, 552–560 (1978)
Anderson, T.F., Prausnitz, J.M.: Application of the UNIQUAC equation to calculation of multicomponent phase equilibria. 2. Liquid–iquid equilibria. Ind. Eng. Chem. Process Des. Dev. 17, 561–567 (1978)
Fredenslund, A., Jones, R.L., Prausnitz, J.M.: Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 21, 1086–1099 (1975)
Fredenslund, A., Gmehling, J., Michelsen, M.L., Rasmussen, P., Prausnitz, J.M.: Computerized design of multicomponent distillation columns using the UNIFAC group contribution method for calculation of activity coefficients. Ind. Eng. Chem. Process Des. Dev. 16, 450–462 (1977)
Lohmann, J., Joh, R., Gmehling, J.: From UNIFAC to modified UNIFAC (Dortmund). Ind. Eng. Chem. Res. 40, 957–964 (2001)
Gmehling, J., Constantinescu, D., Schmid, B.: Group contribution methods for phase equilibrium calculations. Annu. Rev. Chem. Biomol. Eng. 6, 267–292 (2015)
Constantinescu, D., Gmehling, J.: Further development of modified UNIFAC (Dortmund): revision and extension. J. Chem. Eng. Data 61, 2738–2748 (2016)
Lyckman, E.W., Eckert, C.A., Prausnitz, J.M.: Generalized liquid volumes and solubility parameters for regular solution application. Chem. Eng. Sci. 20, 703–706 (1965)
Majer, V., Svoboda, V., Pick, J.: Heats of Vaporization of Fluids. Studies in Modern Thermodynamics 9. Elsevier, Amsterdam (1989)
Frenkel, M.L., Gadzhiev, S.N., Lebedev, Yu.A. (eds.): Thermochemistry and Equilibria of Organic Compounds. Wiley, New York (1993)
Sarge, S.M., Höhne, G.W.H., Hemminger, W.: Calorimetry: Fundamentals, Instrumentation and Applications. Wiley-VCH, Weinheim (2014)
Zaitsau, D.H., Paulechka, E.: Calorimetric determination of enthalpies of vaporization. In: Wilhelm, E., Letcher, T.M. (eds.) Enthalpy and Internal Energy: Liquids, Solutions and Vapours, pp. 133–158. The Royal Society of Chemistry/IACT, Cambridge (2018)
Wagner, W.: New vapour pressure measurements for argon and nitrogen and a new method for establishing rational vapour pressure equations. Cryogenics 13, 470–482 (1973)
Ambrose, D.: The correlation and estimation of vapour pressures IV. Observations on Wagner’s method of fitting equations to vapour pressures. J. Chem. Thermodyn. 18, 45–51 (1986)
Velasco, S., Román, F.L., White, J.A., Mulero, A.: A predictive vapor-pressure equation. J. Chem. Thermodyn. 40, 789–797 (2008)
Forero, G.L.A., Velásquez, J.J.A.: Wagner liquid–vapour pressure equation constants from a simple methodology. J. Chem. Thermodyn. 43, 1235–1251 (2011)
Srinivasan, K., Ng, K.C., Velasco, S., White, J.A.: A corresponding states treatment of the liquid–vapor saturation line. J. Chem. Thermodyn. 44, 97–101 (2012)
Velasco, S., Santos, M.J., White, J.A.: The Miller function, a sensitive test for equations of state and theoretical vapor pressure data. J. Chem. Thermodyn. 58, 263–268 (2013)
Velasco, S., White, J.A.: Some empirical rules concerning the vapor pressure curve revisited. J. Chem. Thermodyn. 68, 193–198 (2014)
Leibovici, C.F., Nichita, D.V.: New basis functions for the representation of vapor pressure data. Fluid Phase Equilib. 361, 1–15 (2014)
Velasco, S., Santos, M.J., White, J.A.: Extended corresponding states expressions for the changes in enthalpy, compressibility factor and constant-volume heat capacity at vaporization. J. Chem. Thermodyn. 85, 68–76 (2015)
Planck, M.: Ueber das Princip der Vermehrung der Entropie. Ann. Phys. Chem. Neue Folge 30, 562–582 (1887)
Wilhelm, E.: What you always wanted to know about heat capacities, but were afraid to ask. J. Solution Chem. 39, 1777–1818 (2010)
Levelt Sengers, J.M.H.: Thermodynamics of solutions near the solvent’s critical point. In: Bruno, T.J., Ely, J.F. (eds.) Supercritical Fluid Technology: Reviews in Modern Theory and Applications, pp. 1–56. CRC Press, Boca Raton (1991)
Binney, J.J., Dowrick, N.J., Fisher, A.J., Newman, M.E.J.: The Theory of Critical Phenomena. Oxford University Press, Oxford (1992)
Guggenheim, E.A.: The principle of corresponding states. J. Chem. Phys. 13, 253–261 (1945)
Magee, J.W.: Molar heat capacity (C V) for saturated and compressed liquid and vapor nitrogen from 65 to 300 K at pressures to 35 MPa. J. Res. Natl. Inst. Stand. Technol. 96, 725–740 (1991)
Perkins, A.R., Magee, J.W.: Molar heat capacity at constant volume for isobutane at temperatures from (114 to 345) K and at pressures to 35 MPa. J. Chem. Eng. Data 54, 2646–2655 (2009)
Polikhronidi, N.G., Abdulagatov, I.M., Batyrova, R.G., Stepanov, G.V., Wu, J.T., Ustuzhanin, E.E.: Experimental study of the isochoric heat capacity of diethyl ether (DEE) in the critical and supercritical regions. Int. J. Thermophys. 33, 185–219 (2012)
Yang, C.N., Yang, C.P.: Critical point in liquid–gas transitions. Phys. Rev. Lett. 13, 303–305 (1964)
Fisher, M.E.: Renormalization group theory: its basis and formulation in statistical physics. Rev. Mod. Phys. 70, 653–681 (1998)
Anisimov, M.A., Sengers, J.V.: Critical region. In: Sengers, J.V., Kayser, R.F., Peters, C.J., White, H.J. (eds.) Equations of State for Fluids and Fluid Mixtures. Experimental Thermodynamics, vol. 5, pp. 381–434. Elsevier/IUPAC, Amsterdam (2000)
Widom, B., Rowlinson, J.S.: New model for the study of liquid–vapor phase transitions. J. Chem. Phys. 52, 1670–1684 (1970)
Mermin, N.D.: Lattice gas with short-range pair interactions and a singular coexistence-curve diameter. Phys. Rev. Lett. 26, 957–959 (1971)
Rice, O.K., Chang, D.R.: Some thermodynamic relations at the critical point in liquid–vapor systems. Proc. Nat. Acad. Sci. USA 69, 3436–3439 (1972)
Fisher, M.E., Orkoulas, G.: The Yang-Yang anomaly in fluid criticality: experiment and scaling theory. Phys. Rev. Letters 85, 696–699 (2000)
Kim, Y.C., Fisher, M.E., Orkoulas, G.: Asymmetric fluid criticality. I. Scaling with pressure mixing. Phys. Rev. E 67, 061506 (2003)
Orkoulas, G., Fisher, M.E., Üstün, C.: The Yang-Yang relation and the specific heats of propane and carbon dioxide. J. Chem. Phys. 113, 7530–7545 (2000)
Orkoulas, G., Fisher, M.E., Panagiotopoulos, A.Z.: Precise simulation of criticality in asymmetric fluids. Phys. Rev. E 63, 051507 (2001)
Wang, J., Anisimov, M.A.: Nature of vapor–liquid asymmetry in fluid criticality. Phys. Rev. E 75, 051107 (2007)
Anisimov, M.A.: Universality versus nonuniversality in asymmetric fluid criticality. Cond. Matter Phys. 16, 23603 (2013)
Cerdeiriña, C.A., Orkoulas, G., Fisher, M.E.: Soluble model fluids with complete scaling and Yang-Yang features. Phys. Rev. Lett. 116, 040601 (2016)
Abdulagatov, I.M., Polikhronidi, N.G., Batyrova, R.G.: Yang-Yang critical anomaly strength parameter from the direct two-phase isochoric heat capacity measurements near the critical point. Fluid Phase Equil. 415, 144–157 (2016)
Losada-Pérez, P., Cerdeiriña, C.A.: Coexisting densities and critical asymmetry between gas and liquid. J. Chem. Thermodyn. 109, 56–60 (2017)
Behnejad, H., Sengers, J.V., Anisimov, M.A.: Thermodynamic behaviour of fluids near critical points. In: Goodwin, A.R.H., Sengers, J.V., Peters, C.J. (eds.) Applied Thermodynamics of Fluids, pp. 321–367. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2010)
Wilhelm, E., Letcher, T.M. (eds.): Heat Capacities: Liquids, Solutions and Vapours. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2010)
Wilhelm, E., Letcher, T.M. (eds.): Volume Properties: Liquids, Solutions and Vapours. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2015)
Wilhelm, E., Letcher, T.M. (eds.): Enthalpy and Internal Energy: Liquids, Solutions and Vapours. The Royal Society of Chemistry/IACT, Cambridge (2018)
Thoen, J., Glorieux, C.: Photothermal techniques for heat capacities. In: Wilhelm, E., Letcher, T.M. (eds.) Heat Capacities: Liquids, Solutions and Vapours, pp. 264–286. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2010)
Thoen, J.: High resolution adiabatic scanning calorimetry and heat capacities. In: Wilhelm, E., Letcher, T.M. (eds.) Heat Capacities: Liquids, Solutions and Vapours, pp. 287–306. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2010)
Anisimov, M.A., Thoen, J.: Heat capacities in the critical region. In: Wilhelm, E., Letcher, T.M. (eds.) Heat Capacities: Liquids, Solutions and Vapours, pp. 307–328. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2010)
Cerdeiriña, C.A., Losada-Pérez, P., Pérez-Sánchez, G., Troncoso, J.: Critical behaviour: pure fluids and mixtures. In: Wilhelm, E., Letcher, T.M. (eds.) Volume Properties: Liquids, Solutions and Vapours, pp. 326–344. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2015)
Losada-Pérez, P., Leys, J., Cordoyiannis, G., Glorieux, C., Thoen, J.: Temperature dependence of the enthalpy near critical and tricritical second-order and weakly first-order transitions. In: Wilhelm, E., Letcher, T.M. (eds.) Enthalpy and Internal Energy: Liquids, Solutions and Vapours, pp. 364–379. The Royal Society of Chemistry/IACT, Cambridge (2018)
Abdulagatov, I.M., Magee, J.W., Polikhronidi, N.G., Batyrova, R.G.: Yang-Yang critical anomaly. In: Wilhelm, E., Letcher, T.M. (eds.) Enthalpy and Internal Energy: Liquids, Solutions and Vapours, pp. 380–410. The Royal Society of Chemistry/IACT, Cambridge (2018)
Watson, K.M.: Thermodynamics of the liquid state. Ind. Eng. Chem. 35, 398–406 (1943)
Thek, R.E., Stiel, L.I.: A new reduced vapor pressure equation. AIChE J. 12, 599–602 (1966). Erratum: AIChE J. 13, 626 (1967)
Sterbacek, A., Biskup, B., Tausk, P.: Calculation of Properties Using Corresponding States Methods. Elsevier, Amsterdam (1979)
Pitzer, K.S.: The volumetric and thermodynamic properties of fluids. I. Theoretical basis and virial coefficients. J. Am. Chem. Soc. 77, 3427–3433 (1955)
Pitzer, K.S., Lippmann, D.Z., Curl Jr., R.F., Huggins, C.M., Peterson, D.E.: The volumetric and thermodynamic properties of fluids. II. Compressibility factor, vapor pressure and entropy of vaporization. J. Am. Chem. Soc. 77, 3433–3440 (1955)
Carruth, G.F., Kobayashi, R.: Extension to low reduced temperatures of three-parameter corresponding states: vapor pressures, enthalpies and entropies of vaporization, and liquid fugacity coefficients. Ind. Eng. Chem. Fundam. 11, 509–517 (1972)
Sivaraman, A., Magee, J., Kobayashi, R.: Correlation for prediction of latent heat of pure components incorporating renormalization group formulations with corresponding-states principle. Fluid Phase Equilib. 16, 1–12 (1984)
Pitzer, K.S., Curl Jr., R.F.: The volumetric and thermodynamic properties of fluids. III. Empirical equation for the second viral coefficient. J. Am. Chem. Soc. 79, 2369–2370 (1957)
Curl Jr., R.F., Pitzer, K.S.: Volumetric and thermodynamic properties of fluids—enthalpy, free energy, and entropy. Ind. Eng. Chem. 50, 265–274 (1958)
Pitzer, K.S.: Origin of the acentric factor. In: Storvick, T.S., Sandler, S.I. (eds.) Phase Equilibria and Fluid Properties in the Chemical Industry: Estimation and Correlation, ACS Symposium Series 60, pp. 1–10. American Chemical Society, Washington, D. C. (1977)
Edmister, W.C.: Applied Hydrocarbon Thermodynamics. Gulf Publishing Company, Houston (1961)
Lee, B.I., Kesler, M.G.: A generalized thermodynamic correlation based on three-parameter corresponding states. AIChE J. 21, 510–527 (1975). Erratum. AIChE J. 21, 1040 (1975); Erratum. AIChE J. 21, 1237 (1975)
Benedict, M., Webb, G.B., Rubin, L.C.: An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures I. Methane, ethane, propane and n-butane. J. Chem. Phys. 8, 334–345 (1940)
Benedict, M., Webb, G.B., Rubin, L.C.: An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures II. Methane, ethane, propane, and n-butane. J. Chem. Phys. 10, 747–758 (1942)
Benedict, M., Webb, G.B., Rubin, L.C.: An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures. Constants for twelve hydrocarbons. Chem. Eng. Progress 47, 419–422 (1951)
Benedict, M., Webb, G.B., Rubin, L.C.: An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures. Fugacities and liquid–vapor equilibria. Chem. Eng. Progress 47, 449–454 (1951)
Wilhelm, E.: Heat capacities: introduction, concepts and selected applications. In: Wilhelm, E., Letcher, T.M. (eds.) Heat Capacities: Liquids, Solutions and Vapours, pp. 1–27. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2010)
Růžička Jr., V., Domalski, E.S.: Estimation of the heat capacities of organic liquids as a function of temperature using group additivity. I. Hydrocarbon compounds. J. Phys. Chem. Ref. Data 22, 597–618 (1993)
Růžička Jr., V., Domalski, E.S.: Estimation of the heat capacities of organic liquids as a function of temperature using group additivity II. Compounds of carbon, hydrogen, halogens, nitrogen, oxygen, and sulfur. J. Phys. Chem. Ref. Data 22, 619–657 (1993)
Zábranský, M., Růžička Jr., V.: Estimation of the heat capacities of organic liquids as a function of temperature using group additivity: an amendment. J. Phys. Chem. Ref. Data 33, 1071–1081 (2004)
Constantinou, L., Gani, R.: New group contribution method for estimating properties of pure compounds. AIChE J. 40, 1697–1710 (1994)
Marrero, J., Gani, R.: Group-contribution based estimation of pure component properties. Fluid Phase Equilib. 183–184, 183–208 (2001)
Kolská, Z., Kukal, J., Zábranský, M., Růžička, V.: Estimatiom of the heat capacity of organic liquids as a function of temperature by a three-level group contribution method. Ind. Eng. Chem. Res. 47, 2075–2085 (2008)
Jovanović, J.D., Knežević-Stevanović, A.B., Grozdanić, D.K.: Prediction of high pressure liquid heat capacities of organic compounds by a group contribution method. J. Serb. Chem. Soc. 76, 417–423 (2011)
Randzio, S.L.: Scanning transitiometry and its use to determine heat capacities of liquids at high pressures. In: Wilhelm, E., Letcher, T.M. (eds.) Heat Capacities: Liquids, Solutions and Vapours, pp. 153–184. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2010)
Benson, S.W., Cruickshank, F.R., Golden, D.M., Haugen, G.R., O’Neal, H.E., Rodgers, A.S., Shaw, R., Walsh, R.: Additivity rules for the estimation of thermochemical properties. Chem. Rev. 69, 279–324 (1969). There are a number of references to Benson’s work, and Poling et al. in Ref. 88 adopted the notation of the CHETAH program (version 7.2) from ASTM, distributed by NIST as Special Data Base 16. This differs from Benson’s original and also from that of previous editions of The Properties of Gases and Liquids
Joback, K.G., Reid, R.C.: Estimation of pure-component properties from group-contributions. Chem. Eng. Commun. 57, 233–243 (1987)
Shi, C., Borchardt, T.B.: JRgui: a Python program of Joback and Reid method. ACS Omega 2, 8682–8688 (2017)
Herzfeld, K.F., Litovitz, T.A.: Absorption and Disperion of Ultrasonic Waves. Academic Press, New York (1959)
Bhatia, A.B.: Ultrasonic Absorption. Oxford University Press, London (1967)
Goodwin, A.R.H., Trusler, J.P.M.: Speed of sound. In: Goodwin, A.R.H., Marsh, K.N., Wakeham, W.A. (eds.) Experimental Thermodynamics, Vol. VII: Measurement of the Thermodynamic Properties of Single Phases, pp. 237–323. Elsevier/IUPAC, Amsterdam (2003)
Wilhelm, E., Asenbaum, A.: Heat capacities and Brillouin scattering in liquids. In: Wilhelm, E., Letcher, T.M. (eds.) Heat Capacities: Liquids, Solutions and Vapours, pp. 238–263. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2010)
Asenbaum, A., Pruner, Ch., Wilhelm, E.: Ultrasonics 1: speed of ultrasound, isentropic compressibility and related properties of liquids. In: Wilhelm, E., Letcher, T.M. (eds.) Volume Properties: Liquids, Solutions and Vapours, pp. 345–394. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2015)
Takagi, T., Wilhelm, E.: Speed-of-sound measurements and heat capacities of liquid sysrems at high pressure. In: Wilhelm, E., Letcher, T.M. (eds.) Heat Capacities: Liquids, Solutions and Vapours, pp. 218–237. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2010)
Takagi, T.: Ultrasonics 2: high pressure speed of sound, isentropic compressibility. In: Wilhelm, E., Letcher, T.M. (eds.) Volume Properties: Liquids, Solutions and Vapours, pp. 395–413. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2015)
Wilhelm, E.: Chemical thermodynamics: a journey of many vistas. J. Solution Chem. 43, 525–576 (2014)
Wilhelm, E.: Pressure dependence of the isothermal compressibility and a modified form of the Tait equation. J. Chem. Phys. 63, 3379–3381 (1975)
Wilhelm, E.: Precision methods for the determination of the solubility of gases in liquids. CRC Crit. Rev. Analyt. Chem. 16, 129–175 (1985)
Bruno, T.J., Ely, J.F. (eds.): Supercritical Fluid Technology: Reviews in Modern Theory and Applications. CRC Press, Boca Raton (1991)
McHugh, M.A., Krukonis, V.J.: Supercritical Fluid Extraction: Principles and Practice, 2nd edn. Butterworth-Heinemann, Boston (1994)
Brunner, G.: Gas Extraction: An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Processes. Springer, Berlin (1994)
Brunner, G. (ed.): Supercritical Fluids as Solvents and Reaction Media. Elsevier, Amsterdam (2004)
Clifford, A.: Fundamentals of Supercritical Fluids. Oxford University Press, Oxford (1999)
Kiran, E., Debenedetti, P.G., Peters, C.J. (eds.): Supercritical Fluids: Fundamentals and Applications. Kluwer, Dordrecht (2000)
Mukhopadhyay, M.: Natural Extracts Using Supercritical Carbon Dioxide. CRC Press, Boca Raton (2000)
Arai, Y., Sako, T., Takebayashi, Y. (eds.): Supercritical Fluids. Molecular Interactions, Physical Properties and New Applications. Springer, Berlin (2002)
Martinez, J.L. (ed.): Supercritical Fluid Extraction of Nutraceuticals and Bioactive Compounds. CRC Press, Boca Raton (2008)
Osborne, J. (ed.): Handbook on Supercritical Fluids: Fundamentals, Properties and Applications. Nova Science Publishers, New York (2014)
Souyoul, S.A., Saussy, K.P., Lupo, M.P.: Nutraceuticals: a review. Dermatol. Ther. (Heidelb.) 8, 5–16 (2018)
Turner, C., King, J.W., Mathiasson, L.: Supercritical fluid extraction and chromatography for fat-soluble vitamin analysis. J. Chromatogr. A 936, 215–237 (2001)
Williams, J.R., Clifford, A.A., Al-Saidi, S.H.R.: Supercritical fluids and their applications in biotechnology and related areas. Mol. Biotechn. 22, 263–286 (2002)
York, P., Kompella, U.B., Shekunov, B.V. (eds.): Drug Delivery and Supercritical Technology. Marcel Dekker, New York (2004)
Brunner, G.: Supercritical fluids: technology and application to food processing. J. Food Eng. 67, 21–33 (2005)
Reverchon, E., De Marco, I.: Supercritical fluid extraction and fractionation of natural matter. J. Supercrit. Fluids 38, 146–166 (2006)
King, J.W., Srinivas, K.: Multiple unit processing sub-and supercritical fluids. J. Supercrit. Fluids 47, 598–610 (2009)
Herrero, M., Mendiola, J.A., Cifuentes, A., Ibáñez, E.: Supercritical fluid extraction: recent advances and applications. J. Chromatogr. A 1217, 2495–2511 (2010)
King, J.W., Srinivas, K., Zhang, D.: Advances in critical fluid processing. In: Proctor, A. (ed.) Alternatives to Conventional Food Processing, pp. 93–144. The Royal Society of Chemistry, Cambridge (2011)
Azmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K.M., Mohamed, A., Sahena, F., Jahurul, M.H.A., Ghafoor, K., Norulaini, N.A.N., Omar, A.K.M.: Techniques for extraction of bioactive compounds from plant materials: a review. J. Food Eng. 117, 426–436 (2013)
King, J.W.: Modern supercritical fluid technology for food applications. Annu. Rev. Food Sci. Technol. 5, 215–238 (2014)
Da Silva, R.P.F.F., Rocha-Santos, T.A.P., Duarte, A.C.: Supercritical fluid extraction of bioactive compounds. Trends Analyt. Chem. 76, 40–51 (2016)
Giddings, J.C., Myers, M.N., McLaren, L., Keller, R.A.: High pressure gas chromatography of nonvolatile species. Science 162, 67–73 (1968)
Giddings, J.C., Myers, M.N., King, J.W.: Dense gas chromatography at pressures to 2000 atmospheres. J. Chromatogr. Sci. 7, 276–283 (1969)
Giddings, J.C., Czubryt, J.J., Myers, M.N.: Solubility phenomena in dense carbon dioxide gas in the range 270–1900 atmospheres. J. Phys. Chem. 74, 4260–4266 (1970)
Eissler, R.L., Friedrich, J.P.: Estimation of supercritical fluid–liquid solubility parameter differences for vegetable oils and other liquids from data taken with a stirred autoclave. J. Am. Oil Chem. Soc. 65, 764–767 (1988)
Mishra, V.K., Temelli, F., Ooraikul, B.: Modeling binary phase behavior of supercritical carbon dioxide and fatty acid esters. J. Supercrit. Fluids 6, 51–57 (1993)
Marcus, Y.: Are solubility parameters relevant to supercritical fluids? J. Supercrit. Fluids 38, 7–12 (2006)
Soave, G.: Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci. 27, 1197–1203 (1972)
Peng, D.-Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15, 59–64 (1976)
Johnston, K.P.: New directions in supercritical fluid science and technology. In: Johnston, K.P., Penninger, J.M.L. (eds.) Supercritical Fluid Science and Technology, ACS Symposium Series 406, pp. 1–12. American Chemical Society, Washington, D. C. (1989)
Allada, S.R.: Solubility parameters of supercritical fluids. Ind. Eng. Chem. Process Des. Dev. 23, 344–348 (1984)
Hougen, O.A., Watson, K.M., Ragatz, R.A.: Chemical Process Principles, Part II, 2nd edn. Asia Publishing House, Bombay (1960)
Marcus, Y.: Solubility parameter of carbon dioxide—an enigma. ACS Omega 3, 524–528 (2018)
Span, R., Wagner, W.: A new equation of state for carbon dioxide covering the fluid region from the triple point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 25, 1509–1596 (2007)
Franck, E.U.: Water and aqueous solutions at high pressures and temperatures. Pure Appl. Chem. 24, 13–30 (1970)
Franck, E.U.: Supercritical water. In: Tremaine, P.R., Hill, P.G., Irish, D.E., Balakrishnan, P.V. (eds.) Steam, Water, and Hydrothermal Systems: Physics and Chemistry Meeting the Needs of Industry. In: Proceedings of the 13th International Conference on the Properties of Water and Steam. NRC Research Press, Ottawa (2000)
Weingärtner, H., Franck, E.U.: Supercritical water as a solvent. Angew. Chem. Int. Ed. 44, 2672–2692 (2005)
Wagner, W., Kretzschmar, H.-J.: International Steam Tables—Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97, 2nd edn. Springer, Berlin (2008)
Meija, J., Coplen, T.B., Berglund, M., Brand, W.A., De Bièvre, P., Gröning, M., Holden, N.E., Irrgeher, J., Loss, R.D., Walczyk, T., Prohaska, T.: Atomic weights of the elements 2013 (IUPAC Technical Report). Pure Appl. Chem. 88, 265–291 (2016)
Fernández, D.P., Goodwin, A.R.H., Lemmon, E.W., Levelt-Sengers, J.M.H., Williams, R.C.: A formulation for the static permittivity of water and steam at temperatures from 238 K to 873 K at pressures up to 1200 MPa, including derivatives and Debye–Hückel coefficients. J. Phys. Chem. Ref. Data 26, 1125–1166 (1997)
Harris, F.E., Alder, B.J.: Dielectric polarization in polar substances. J. Chem. Phys. 21, 1031–1038 (1953)
Kirkwood, J.G.: The dielectric polarization of polar liquids. J. Chem. Phys. 7, 911–919 (1939)
Kutney, M.C., Dodd, V.S., Smith, K.A., Herzog, H.J., Tester, J.W.: Tester, J.W.: A hard-sphere volume-translated van der Waals equation of state for supercritical process modeling. 1. Pure components. Fluid Phase Equil. 128, 149–171 (1997)
Marcus, Y.: Supercritical Water, a Green Solvent: Properties and Uses. Wiley, Hoboken (2012)
Pang, T.-H., McLaughlin, E.: Supercritical extraction of aromatic hydrocarbon solids and tar sand bitumens. Ind. Eng. Chem. Process Des. Dev. 24, 1027–1032 (1985)
Clausius, R.: Über das Verhalten der Kohlensäure in Bezug auf Druck, Volumen und Temperatur. Ann. Phys. Chem. Neue Folge 9, 337–357 (1880)
Berthelot, D.: Sur les thermomètres à gaz et sur la réduction de leurs indications à l’échelle absolue des températures. Trav. Mém. Bureau Int. Poids et Més. XIII, (B) 1–113 (1907). The equation of state known as the Berthelot EOS is introduced on p. 26 of this article with the follwing original quotation:L’équation caractéristic que nous désignerons sous le nom d’équation de Van der Waals modifiée, devient \( \left( {p + \frac{a}{{Tv^{2} }}} \right)\left( {v - b} \right) = RT \).”
Redlich, O., Kwong, J.N.S.: On the thermodynamics of solution. V. An equation of state. Fugacities of gaseous solutions. Chem. Rev. 44, 233–244 (1949)
Martin, J.J.: Cubic equations of state—which? Ind. Eng. Chem. Fundam. 18, 81–97 (1979)
Kumar, K.H., Starling, K.E.: Comments on: “Cubic equations of state—which?”. Ind. Eng. Chem. Fundam. 19, 128–129 (1980)
Martin, J.J.: Comments on: “Cubic equations of state – which?”. Ind. Eng. Chem. Fundam. 19, 130–131 (1980)
Peneloux, A., Rauzy, E., Freze, R.: A consistent correction for Redlich–Kwong–Soave volumes. Fluid Phase Equilib. 8, 7–23 (1982)
Chen, C.-C., Mathias, P.M.: Applied thermodynamics for process modeling. AIChE J. 48, 194–200 (2002)
Valderama, J.O.: The state of the cubic equations of state. Ind. Eng. Chem. Res. 42, 1603–1618 (2003)
Prausnitz, J.M., Tavares, F.W.: Thermodynamics of fluid-phase equilibria for standard chemical engineering operations. AIChE J. 50, 739–761 (2004)
Wilczek-Vera, G., Vera, J.H.: Understanding cubic equations of state: a search for the hidden clues of their success. AIChE J. 61, 2824–2831 (2015)
Fuller, G.G.: A modified Redlich–Kwong–Soave equation of state capable of representing the liquid state. Ind. Eng. Chem. Fundam. 15, 254–257 (1976)
Graboski, M.S., Daubert, T.E.: A modified Soave equation of state for phase equilibrium calculations. 1. Hydrocarbon systems. Ind. Eng. Chem. Process Des. Dev. 17, 443–448 (1978)
Graboski, M.S., Daubert, T.E.: A modified Soave equation of state for phase equilibrium calculations. 2. Systems containing CO2, H2S, N2, and CO. Ind. Eng. Chem. Process Des. Dev. 17, 448–454 (1978)
Graboski, M.S., Daubert, T.E.: A modified Soave equation of state for phase equilibrium calculations. 3. Systems containing hydrogen. Ind. Eng. Chem. Process Des. Dev. 18, 300–306 (1979)
Lopez-Echeverry, J.S., Reif-Acherman, S., Araujo-Lopez, E.: Peng-Robinson equation of state: 40 years through cubics. Fluid Phase Equil. 447, 39–71 (2017)
Privat, R., Visvonte, M., Zazoua-Khames, A., Jaubert, J.-N., Gani, R.: Analysis and prediction of the alpha-function parameters used in cubic equations of state. Chem. Eng. Sci. 126, 584–603 (2015)
Le Guennec, Y., Lasala, S., Privat, R., Jaubert, J.-N.: A consistency test for α-functions of cubic equations of state. Fluid Phase Equilib. 427, 513–538 (2016)
Le Guennec, Y., Privat, R., Lasala, S., Jaubert, J.-N.: On the imperative need to use a consistent α-function for the prediction pure-compound supercritical properties with a cubic equation of state. Fluid Phase Equilib. 445, 45–53 (2017)
Colina, C.M., Santos, J., Olivera-Fuentes, C.: High-temperature behaviour of the cohesion parameter of cubic equations of state. High Temp.–High Press. 29, 525–532 (1997)
Mahmoodi, P., Sedigh, M.: Soave alpha function at supercritical temperatures. J. Supercrit. Fluids 112, 22–36 (2016)
Mahmoodi, P., Sedigh, M.: Second derivative of alpha functions in cubic equations of state. J. Supercrit. Fluids 120, 191–206 (2017)
Mahmoodi, P., Sedigh, M.: A consistent and precise alpha function for cubic equations of state. Fluid Phase Equilib. 436, 69–84 (2017)
Wang, F., Threatt, T.J., Vargas, F.M.: Determination of solubility parameters from density measurements for non-polar hydrocarbons at temperatures from (298–433) K and pressures up to 137 MPa. Fluid Phase Equilib. 430, 19–32 (2016)
Majer, V., Pádua, A.A.H.: Measurement of density with vibrating bodies. In: Goodwin, A.R.H., Marsh, K.N., Wakeham, W.A. (eds.) Experimental Thermodynamics, Vol. VII: Measurement of the Thermodynamic Properties of Single Phases, pp. 149–168. Elsevier/IUPAC, Amsterdam (2003)
González-Salgado, D., Troncoso, J., Romani, L.: Experimental techniques 2: vibrating tube densimetry. In: Wilhelm, E., Letcher, T.M. (eds.) Volume Properties: Liquids, Solutions and Vapours, pp. 100–114. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2015)
Chapman, W.G., Gubbins, K.E., Jackson, G., Radosz, M.: SAFT: equation-of-state solution model for associating fluids. Fluid Phase Equil. 52, 31–38 (1989)
Gross, J., Sadowski, G.: Perturbed-Chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind. Eng. Chem. Res. 40, 1244–1260 (2001)
Michelsen, M.L., Hendriks, E.M.: Physical properties from association models. Fluid Phase Equilib. 180, 147–165 (2001)
Gross, J., Sadowski, G.: Application of the Perturbed-Chain SAFT equation of state to associating systems. Ind. Eng. Chem. Res. 41, 5510–5515 (2002)
Karakatsani, E.K., Spyriouni, T., Economou, I.G.: Extended statistical associating fluid theory (SAFT) equations of state for dipolar fluids. AIChE J. 51, 2328–2342 (2005)
Dufal, S., Lafitte, T., Galindo, A., Jackson, G., Haslam, A.J.: Developing intermolecular-potential models for use with the SAFT-VR Mie equation of state. AIChE J. 61, 2891–2912 (2015)
Oliveira, M.B., Llovell, F., Coutinho, J.A.P., Vega, L.F.: New procedure for enhancing the transferability of statistical associating fluid theory (SAFT) molecular parameters: the role of derivative properties. Ind. Eng. Chem. Res. 55, 10011–10024 (2016)
Fuenzalida, M., Cuevas-Valenzuela, J., Pérez-Correa, J.R.: Improved estimation of PC-SAFT equation of state parameters using a multi-objective variable-weight cost function. Fluid Phase Equil. 427, 308–319 (2016)
Zeng, Z.-Y., Xu, Y.-Y., Li, Y.-W.: Calculation of solubility parameter using perturbed-chain SAFT and cubic-plus-association equations of state. Ind. Eng. Chem. Res. 47, 9663–9669 (2008)
Kontogeorgis, G.M., Voutsas, E.C., Yakoumis, I.V., Tassios, D.P.: An equation of state for associating fluids. Ind. Eng. Chem. Res. 35, 4310–4318 (1996)
Kontogeorgis, G.M., Michelsen, M.L., Folas, G.K., Derawi, S., von Solms, N., Stenby, E.H.: Ten years with the CPA (cubic-plus-association) equation of state. Part 1. Pure compounds and self-associating systems. Ind. Eng. Chem. Res. 45, 4855–4868 (2006)
Kontogeorgis, G.M., Michelsen, M.L., Folas, G.K., Derawi, S., von Solms, N., Stenby, E.H.: Ten years with the CPA (cubic-plus-association) equation of state. Part 2. Ind. Eng. Chem. Res. 45, 4869–4878 (2006)
Stefanis, E., Tsivintzelis, I., Panayiotou, C.: The partial solubility parameters: an equation-of-state approach. Fluid Phase Equilib. 240, 144–154 (2006)
Panayiotou, C.: Partial solvation parameters and LSER molecular descriptors. J. Chem. Thermodyn. 51, 172–189 (2012)
Panayiotou, C., Mastrogeorgopoulos, S., Aslanidou, D., Avgidou, M., Hatzimanikatis, V.: Redefining solubility parameters: bulk and surface properties from unified molecular descriptors. J. Chem. Thermodyn. 111, 207–220 (2017)
Tsivintzelis, I., Panayiotou, C.: Molecular thermodynamics of solutions. In: Wilhelm, E., Letcher, T.M. (eds.) Enthalpy and Internal Energy: Liquids, Solutions and Vapours, pp. 569–589. The Royal Society of Chemistry/IACT, Cambridge (2018)
Chapman, W.G., Gubbins, K.E., Jackson, G., Radosz, M.: New reference equation of state for associating liquids. Ind. Eng. Chem. Res. 29, 1709–1721 (1990)
Magoulas, K., Tassios, D.: Thermophysical properties of n-alkanes from C1 to C20 and their prediction for higher ones. Fluid Phase Equilib. 56, 119–140 (1990)
Zabaloy, M.S., Brignole, E.A.: On volume translations in equations of state. Fluid Phase Equilib. 140, 87–95 (1997)
Tsai, J.-C., Chen, Y.-P.: Application of a volume-translated Peng-Robinson equation of state on vapor–liquid equilibrium calculations. Fluid Phase Equilib. 145, 193–215 (1998)
Yelash, L.V., Kraska, T.: Volume-translated equations of state: empirical approach and physical relevance. AIChE J. 49, 1569–1579 (2003)
Frey, K., Augustine, C., Ciccolini, R.P., Paap, S., Modell, M., Tester, J.: Volume translation in equations of state as a means of accurate property estimation. Fluid Phase Equilib. 260, 316–325 (2007)
Abudour, A.M., Mohammad, S.A., Robinson Jr., R.L., Gasem, K.A.M.: Volume-translated Peng-Robinson equation of state for saturated and single-phase liquid densities. Fluid Phase Equilib. 335, 74–87 (2012)
Abudour, A.M., Mohammad, S.A., Robinson Jr., R.L., Gasem, K.A.M.: Volume-translated Peng-Robinson equation of state for liquid densities of diverse binary mixtures. Fluid Phase Equilib. 349, 37–55 (2013)
Jaubert, J.-N., Privat, R., Le Guennec, Y., Coniglio, L.: Note on the properties altered by application of a Péneloux-type volume translation to an equation of state. Fluid Phase Equilib. 419, 88–95 (2016)
Hekayati, J., Roosta, A., Javanmardi, J.: Volumetric properties of supercritical carbon dioxide from volume-translated and modified Peng-Robinson equations of state. Korean J. Chem. Eng. 33, 3231–3244 (2016)
Shi, J., Li, H.A.: Criterion for determining crossover phenomenon in volume-translated equation of states. Fluid Phase Equilib. 430, 1–12 (2016)
Shi, J., Li, H.A., Pang, W.: An improved volume translation strategy for PR EOS without crossover issue. Fluid Phase Equilib. 470, 164–175 (2018)
Tihic, A., Kontogeorgis, G.M., von Solms, N., Michelsen, M.L.: A predictive group-contribution simplified PC-SAFT equation of state: application to polymer systems. Ind. Eng. Chem. Res. 47, 5092–5101 (2008)
Rai, N., Wagner, A.J., Ross, R.B., Siepmann, J.I.: Application of the TraPPE force field for predicting the Hildebrand solubility parameters of organic solvents and monomer units. J. Chem. Theory Comput. 4, 136–144 (2008)
Belmares, M., Blanco, M., Goddard III, W.A., Ross, R.B., Caldwell, G., Chou, S.-H., Pham, J., Olofson, P.M., Thomas, C.: Hildebrand and Hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors. J. Comput. Chem. 25, 1814–1826 (2004)
Rai, N., Siepmann, J.I., Schultz, N.E., Ross, R.B.: Pressure dependence of the Hildebrand solubility parameter and the internal pressure: Monte Carlo simulations for external pressures up to 300 MPa. J. Phys. Chem. C 111, 15634–15641 (2007)
Shahamat, M., Rey, A.D.: Characterization of pressure effects on the cohesive properties and structure of hexane and polyethylene using molecular dynamics simulations. Macromol. Theory Simul. 21, 535–543 (2012)
Meunier, M. (ed.): Industrial Applications of Molecular Simulations. CRC Press, Taylor & Francis Group, Boca Raton (2012)
Gupta, J., Nunes, C., Vyas, S., Jonnalagadda, S.: Prediction of solubility parameters and miscibility of pharmaceutical compounds by molecular dynamics simulations. J. Phys. Chem. B 115, 2014–2023 (2011)
Huynh, L., Neale, C., Pomès, R., Allen, C.: Computational approaches to the rational design of nanoemulsions, polymeric micelles, and dendrimers for drug delivery. Nanomedicine 8, 20–36 (2012)
Smith, W.R., Jirsák, J., Nezbeda, I., Qi, W.: Molecular simulation of caloric properties of fluids modelled by force fields with intramolecular contributions: application to heat capacities. J. Chem. Phys. 147, 034508 (2017)
McQuarrie, D.A.: Statistical Mechanics. Harper & Row, New York (1976)
Katayama, T.: Heats of mixing, liquid heat capacities and enthalpy—concentration charts for methanol–water and iso-propanol–water systems. Chem. Eng. (Japan) 26, 361–372 (1962)
Rayer, A.V., Henni, A., Tontiwachwuthikul, P.: Molar heat capacities of solvents used in CO2 capture: a group additivity and molecular connectivity analysis. Can. J. Chem. Eng. 90, 367–376 (2012)
Yaws, C.L.: Chemical Properties Handbook. McGraw–Hill Education, New York (1999)
Yoon, T.J., Lee, Y.-W.: Current theoretical opinions and perspectives on the fundamental description of supercritical fluids. J. Supercrit. Fluids 134, 21–27 (2018)
Vega, L.F.: Perspectives on molecular modeling of supercritical fluids: from equations of state to molecular simulation. Recent advances, remaining challenges and opportunities. J. Supercrit. Fluids 134, 41–50 (2018)
Wilson, K.G.: Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B 4, 3174–3183 (1971)
Wilson, K.G.: Renormalization group and critical phenomena. II. Phase-space cell analysis of critical behavior. Phys. Rev. B 4, 3184–3205 (1971)
Llovell, F., Vega, L.F.: Global fluid phase equilibria and critical phenomena of selected mixtures using the crossover soft-SAFT equation. J. Phys. Chem. B 110, 1350–1362 (2006)
Forte, E., Llovell, F., Vega, L.F., Trusler, J.P.M., Galindo, A.: Application of a renormalization-group treatment to the statistical associating fluid theory for potentials of variable range (SAFT-VR). J. Chem. Phys. 134, 154102 (2011)
Bymaster, A., Emborsky, C., Dominik, A., Chapman, W.G.: Renormalization-group corrections to a perturbed-chain statistical associating fluid theory for pure fluids near to and far from the critical region. Ind. Eng. Chem. Res. 47, 6264–6274 (2008)
Barton, A.F.M.: Internal pressure: a fundamental liquid property. J. Chem. Educ. 48, 156–162 (1971)
Barton, A.F.M.: Solubility parameters. Chem. Rev. 75, 731–753 (1975)
Dack, M.R.J.: The importance of solvent internal pressure and cohesion to solution phenomena. J. Chem. Soc. Rev. 4, 211–229 (1975)
Marcus, Y.: The Properties of Solvents. Wiley Series in Solution Chemistry, vol. 4. Wiley, Chichester (1998)
Marcus, Y.: Internal pressure of liquids and solutions. Chem. Rev. 113, 6536–6551 (2013)
Whalley, E.: The compression of liquids. In: Le Neindre, B., Vodar, B. (eds.) Experimental Thermodynamics, Volume II: Experimental Thermodynamics of Non-reacting Fluids, pp. 421–500. Butterworths/IUPAC, London (1975)
McLinden, M.O.: Experimental techniques 1: direct methods. In: Wilhelm, E., Letcher, T.M. (eds.) Volume Properties: Liquids, Solutions and Vapours, pp. 73–99. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2015)
Randzio, S.L., Grolier, J.-P.E., Chorazewski, M.: High-pressure “Maxwell relations” measurements. In: Wilhelm, E., Letcher, T.M. (eds.) Volume Properties: Liquids, Solutions and Vapours, pp. 414–438. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2015)
Lafuente, C., Gascón, I., Cerdeiriña, C.A., Gonzáles-Salgado, D.: Volumetric properties and thermodynamic response functions of liquids and liquid mixtures. In: Wilhelm, E., Letcher, T.M. (eds.) Volume Properties: Liquids, Solutions and Vapours, pp. 439–456. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2015)
Lemmon, E.W., Huber, M.L., McLinden, M.O.: NIST Standard Reference Database 23. REFPROP, Reference Fluid Thermodynamic and Transport Properties (2003)
Frank, H.S.: Free volume and entropy in condensed systems II. Entropy of vaporization in liquids and the pictorial theory of the liquid state. J. Chem. Phys. 13, 493–507 (1945)
Benninga, H., Scott, R.L.: Internal pressure of carbon tetrachloride between –7° and 70°. J. Chem. Phys. 23, 1911–1914 (1955)
Smith, E.B., Hildebrand, J.H.: Liquid isochores and derived functions of n-C7F16, c-C6F11CF3, c-C4Cl2F6, n-2,2,3-C4Cl3F7, CCl2F-CCl2F, and CCl4. J. Chem. Phys. 31, 145–147 (1959)
Allen, G., Gee, G., Wilson, G.J.: Intermolecular forces and chain flexibilities in polymers: I. Internal pressures and cohesive energy densities of simple liquids. Polymer 1, 456–466 (1960)
Allen, G., Gee, G., Mangaraj, D., Sims, D., Wilson, G.J.: Intermolecular forces and chain flexibilities in polymers: II. Internal pressures of polymers. Polymer 1, 467–476 (1960)
Bianchi, U., Agabio, G., Turturro, A.: Internal pressure of simple liquids. J. Phys. Chem. 69, 4392–4395 (1965)
Fried, V., Schneier, G.B.: Some comments on cohesion energies of liquids. J. Phys. Chem. 72, 4688–4690 (1968)
Bagley, E.B., Nelson, T.P., Barlow, J.W., Chen, S.-A.: Internal pressure measurements and liquid-state energies. Ind. Eng. Chem. Fundam. 9, 93–97 (1970)
Bagley, E.B., Nelson, T.P., Chen, S.-A., Barlow, J.W.: Internal pressure measurements and external molecular vibrational modes in the liquid state. Ind. Eng. Chem. Fundam. 10, 27–32 (1970)
Bagley, E.B., Nelson, T.P., Scigliano, J.M.: Internal pressures of liquids and their relationship to the enthalpies and entropies of mixing in nonelectrolyte solutions. J. Phys. Chem. 77, 2794–2798 (1973)
Amoros, J., Solana, J.R., Villar, E.: Behaviour of the internal pressure of liquids in accordance with variations in temperature, volume and cohesive energy density. Mater. Chem. Phys. 10, 557–578 (1984)
Westwater, W., Frantz, H.W., Hildebrand, J.H.: The internal pressure of pure and mixed liquids. Phys. Rev. 31, 135–144 (1928)
Hildebrand, J.H.: The compressibility and thermal pressure coefficients of certain liquids. Phys. Rev. 34, 649–651 (1929)
Hildebrand, J.H.: Intermolecular forces in liquids. Phys. Rev. 34, 984–993 (1929)
Hildebrand, J.H., Carter, J.M.: A study of van der Waals forces between tetrahalide molecules. J. Am. Chem. Soc. 54, 3592–3603 (1932)
Randzio, S.L., Grolier, J.-P.E., Quint, J.R.: An isothermal scanning calorimeter controlled by linear pressure variations from 0.1 to 400 MPa. Calibration and comparison with the piezothermal technique. Rev. Sci. Instrum. 65, 960–965 (1994)
Randzio, S.L., Grolier, J.-P.E., Quint, J.R., Eatough, D.J., Lewis, E.A., Hansen, L.D.: n-Hexane as a model for compressed simple liquids. Int. J. Thermophys. 15, 415–441 (1994)
Randzio, S.L., Grolier, J.-P.E., Quint, J.R.: Thermophysical properties of 1-hexanol over the temperature range from 303 to 503 K and at pressures from the saturation line to 400 MPa. Fluid Phase Equilib. 110, 341–359 (1995)
Randzio, S.L.: Scanning transitiometry. Chem. Soc. Rev. 25, 383–392 (1996)
Chorążewski, M., Grolier, J.-P.E., Randzio, S.L.: Isobaric thermal expansivities of toluene measured by scanning transitiometry at temperatures from (243 to 423) K and pressures up to 200 MPa. J. Chem. Eng. Data 55, 5489–5496 (2010)
Dávila, M.J., Alcalde, R., Atilhan, M., Aparicio, S.: PρT measurements and derived properties of liquid 1-alkanols. J. Chem. Thermodyn. 47, 241–259 (2012)
Ihmels, E.C., Gmehling, J.: Densities of tolouene, carbon dioxide, carbonyl sulfide, and hydrogen sulfide over a wide temperature and pressure range in the sub- and supercritical state. Ind. Eng. Chem. Res. 40, 4470–4477 (2001)
Spencer, F.C., Danner, R.P.: Improved equation for prediction of saturated liquid density. J. Chem. Eng. Data 17, 236–241 (1972)
Dymond, J.H., Malhotra, R.: The Tait equation: 100 years on. Int. J. Thermophys. 9, 941–951 (1988)
Haward, R.N., Parker, B.M.: The internal pressure of simple liquids. J. Phys. Chem. 72, 1842–1844 (1968)
Lugo, L., Comuñas, M.J.P., López, E.R., Fernández, J.: (p, V m, T, x) measurements of dimethyl carbonate + octane binary mixtures I. Experimental results, isothermal compressibilities, isobaric expansivities and internal pressures. Fluid Phase Equilib. 186, 235–255 (2001)
Gibson, R.E., Loeffler, O.H.: Pressure–volume–temperature relations in solution. V. The energy–volume coefficients of carbon tetrachloride, water and ethylene glycol. J. Am. Chem. Soc. 63, 898–906 (1941)
Wilhelm, E., Zettler, M., Sackmann, H.: Molwärmen binärer Systeme aus Cyclohexan, Kohlenstofftetrachlorid, Siliziumtetrachlorid und Zinntetrachlorid. Ber. Bunsenges. Phys. Chem. 78, 795–804 (1974)
Muringer, M.J.P., Trappeniers, N.J., Biswas, S.N.: The effect of pressure on the sound velocity and density of toluene and n-heptane up to 2600 bar. Phys. Chem. Liq. 14, 273–296 (1985)
Asenbaum, A., Wilhelm, E., Soufi-Siavoch, P.: Brillouin scattering in liquid toluene at high pressures. Acustica 68, 131–141 (1989)
Wilhelm, E.: The fascinating world of pure and mixed nonelectrolytes. Pure Appl. Chem. 77, 1317–1330 (2005)
Staveley, L.A.K., Hart, K.R., Tupman, W.I.: The heat capacities and other thermodynamic properties of some binary liquid mixtures. Disc. Faraday Soc. 15, 130–142 (1953)
Staveley, L.A.K., Tupman, W.I., Hart, K.R.: Some thermodynamic properties of the systems benzene + ethylene dichloride, benzene + carbon tetrachloride, acetone + chloroform, and acetone + carbon disulphide. Trans. Faraday Soc. 51, 323–343 (1955)
Harrison, D., Moelwyn-Hughes, E.A.: The heat capacities of certain liquids. Proc. Roy. Soc. A 239, 230–246 (1957)
Wilhelm, E., Schano, R., Becker, G., Findenegg, G.H., Kohler, F.: Molar heat capacity at constant volume. Binary mixtures of 1,2-dichloroethane and 1,2-dibromoethane with cyclohexane. Trans. Faraday Soc. 65, 1443–1455 (1969)
Verdier, S., Andersen, S.I.: Determination of isobaric thermal expansivity of organic compounds from 0.1 to 30 MPa at 30 °C with an isothermal pressure scanning microcalorimeter. J. Chem. Eng. Data 48, 892–897 (2003)
Verdier, S., Andersen, S.I.: Internal pressure and solubility parameter as a function of pressure. Fluid Phase Equilib. 231, 125–137 (2005)
Kaplan, I.G.: Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials. Wiley, Chichester (2006)
Lucas, K.: Molecular Models for Fluids. Cambridge University Press, New York (2007)
Wu, J.Z.: Density functional theory for liquid structure and thermodynamics. In: Lu, X., Hu, Y. (eds.) Molecular Thermodynamics of Complex Systems. Structure and Bonding, vol. 131, pp. 1–73. Springer, Berlin (2009)
Tuckerman, M.E.: Statistical Mechanics: Theory and Molecular Simulation. Oxford University Press, New York (2010)
Goodwin, A.R.H., Sengers, J.V., Peters, C.J. (eds.): Applied Thermodynamics of Fluids. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2010)
Gray, C.G., Gubbins, K.E.: Theory of Molecular Fluids. Vol. 1: Fundamentals. Clarendon Press, Oxford (1984)
Gray, C.G., Gubbins, K.E., Joslin, C.G.: Theory of Molecular Fluids. Vol. 2. Applications. Oxford University Press, Oxford (2011)
Deiters, U.K., Kraska, T.: High-Pressure Fluid Phase Equilibria: Phenomenology and Computation. Elsevier, Oxford (2012)
Hansen, J.-P., McDonald, I.R.: Theory of Simple Liquids, 4th edn. Academic Press, Oxford (2013)
Assael, M.J., Goodwin, A.R.H., Vesovic, V., Wakeham, W.A. (eds.): Experimental Thermodynamics Volume IX: Advances in Transport Properties of Fluids. The Royal Society of Chemistry/IUPAC, Cambridge (2014)
Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids, 2nd edn. Oxford University Press, Oxford (2017)
Mie, G.: Zur kinetischen Gastheorie der einatomigen Körper. Ann. Phys. 11, 657–697 (1903)
Hergert, W., Wried, T. (eds.): The Mie Theory. Basics and Applications. Springer Series in Optical Sciences, vol. 169. Springer, Berlin (2012)
Lennard-Jones, J.E.: Cohesion. Proc. Phys. Soc. 43, 461–482 (1931)
Jäger, B., Hellmann, R., Bich, E., Vogel, E.: Ab initio virial equation of state for argon using a new nonadditive three-body potential. J. Chem. Phys. 135, 084308 (2011)
International Union of Pure and Applied Chemistry: Quantities, Units and Symbols in Physical Chemistry. RSC Publishing/IUPAC, Cambridge (2007)
Grabowski, S.J. (ed.): Hydrogen Bonding—New Insights. Springer, Dordrecht (2006)
Marechal, Y.: The Hydrogen Bond and the Water Molecule: The Physics and Chemistry of Water, Aqueous and Bio Media. Elsevier, Amsterdam (2007)
Gilli, G., Gilli, P.: The Nature of the Hydrogen Bond. Outline of a Comprehensive Hydrogen Bond Theory. Oxford University Press, Oxford (2009)
Dolezalek, F.: Zur Theorie der binären Gemische und konzentrierten Lösungen. Z. Phys. Chem. 64, 727–747 (1908)
Wertheim, M.S.: Fluids with highly directional attractive forces. I. Statistical thermodynamics. J. Stat. Phys. 35, 19–34 (1984)
Wertheim, M.S.: Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations. J. Stat. Phys. 35, 35–47 (1984)
Wertheim, M.S.: Fluids with highly directional attractive forces. III. Multiple attraction sites. J. Stat. Phys. 42, 459–476 (1986)
Wertheim, M.S.: Fluids with highly directional attractive forces. IV. Equilibrium polymerization. J. Stat. Phys. 42, 477–492 (1986)
Wertheim, M.S.: Fluids of dimerizing hard spheres, and fluid mixtures of hard spheres and dispheres. J. Chem. Phys. 85, 2929–2936 (1986)
Wertheim, M.S.: Thermodynamic perturbation theory of polymerization. J. Chem. Phys. 87, 7323–7331 (1986)
Carlson, H.C., Colburn, A.P.: Vapor–liquid equilibria of nonideal solutions. Utilization of theoretical methods to extend data. Ind. Eng. Chem. 34, 581–589 (1942)
Griffith, R.B., Wheeler, J.C.: Critical points in multicomponent systems. Phys. Rev. A 2, 1047–1064 (1970)
Rowlinson, J.S., Swinton, F.L.: Liquids and Liquid Mixtures, 3rd edn. Butterworth Scientific, London (1982)
Mohr, J.P., Newell, D.B., Taylor, B.N.: CODATA recommended values of the fundamental physical constants: 2014. Rev. Mod. Phys. 88, 035009-1–035009-73 (2016)
Mohr, J.P., Newell, D.B., Taylor, B.N., Tiesinga, E.: Data and analysis for the CODATA 2017 special fundamental constants adjustment. Metrologia 55, 125–146 (2018)
Newell, D.B., Cabiati, F., Fischer, J., Fujii, K., Karshenboim, S.G., Margolis, H.S., de Mirandés, E., Mohr, J.P., Nez, F., Pachucki, K., Quinn, T.J., Taylor, B.N., Wang, M., Wood, B.M., Zhang, Z.: The CODATA 2017 values of h, e, k, and N A for the revision of the SI. Metrologia 55, L13–L16 (2018)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wilhelm, E. Mitigating Complexity: Cohesion Parameters and Related Topics. I: The Hildebrand Solubility Parameter. J Solution Chem 47, 1626–1709 (2018). https://doi.org/10.1007/s10953-018-0821-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-018-0821-1