Skip to main content

Advertisement

Log in

Non-constant Diffusion Behavior for CO2 Diffusion into Brine: Influence of Density-Driven Convection

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A graphically-based analysis method used to characterize the diffusion process of carbon dioxide (CO2) into brine conventionally assumes a constant diffusion coefficient. However, this study found that the assumption is not valid: an inflection point appeared in the calculated dimensionless pressure versus time curve separating the whole diffusion process into unsteady and steady stages, with each stage corresponding to different mechanisms. The unsteady stage, which accounts for the majority of the dissoluble CO2 diffused into the brine, has hitherto always been neglected in calculating the diffusion coefficient. In this study, a pseudo-diffusion coefficient, which considers both the natural convection effect caused by fluid circulation due to density difference and molecule diffusion driven by the dissolved CO2 concentration gradient, is proposed to characterize the unsteady stage of the diffusion process. Results from 21 pressure decay experiments indicate that the pseudo-diffusion coefficient of the unsteady stage varies directly with environment’s temperature and inversely with the brine concentration and pressure. The pseudo-diffusion coefficient varied in the range of 10−8–10−7 m2·s−1, while the diffusion coefficient reported in the literature vary in the lower range of 10−10–10−8 m2·s−1. The up to three orders of magnitude difference in the diffusion coefficients representing different diffusive mechanisms testifies to the importance of the unsteady stage in the diffusion of CO2 in brine. This higher range of variation for the pseudo-diffusion coefficient now incorporating the unsteady stage has also the side effect of introducing higher uncertainties into the prediction of the concentration distribution in CO2 sequestration calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Azin, R., Mahmoudy, M., Raad, S., Osfouri, S.: Measurement and modeling of CO2 diffusion coefficient in saline aquifer at reservoir conditions. Open Eng. 3, 585–594 (2013)

    Article  CAS  Google Scholar 

  2. de Coninck, H., Benson, S.M.: Carbon dioxide capture and storage: issues and prospects. Annu. Rev. Environ. Resour. 39, 243–270 (2014)

    Article  Google Scholar 

  3. Imbus, S.W., Dodds, K., Otto, C.J., Trautz, R.C., Christopher, C.A., Agarwal, A., Benson, S.M.: CO2 storage contingencies initiative: detection, intervention and remediation of unexpected CO2 migration. Energy Procedia 37, 7802–7814 (2013)

    Article  CAS  Google Scholar 

  4. Loulou, T., Adhikari, B., Lecomte, D.: Estimation of concentration-dependent diffusion coefficient in drying process from the space-averaged concentration versus time with experimental data. Chem. Eng. Sci. 61, 7185–7198 (2006)

    Article  CAS  Google Scholar 

  5. Hao, M., Song, Y., Su, B., Zhao, Y.: Diffusion of CO2 in n-hexadecane determined from NMR relaxometry measurements. Phys. Lett. A 379, 1197–1201 (2015)

    Article  CAS  Google Scholar 

  6. Sheikha, H., Pooladi-Darvish, M., Mehrotra, A.K.: Development of graphical methods for estimating the diffusivity coefficient of gases in bitumen from pressure-decay data. Energy Fuel 19, 2041–2049 (2005)

    Article  CAS  Google Scholar 

  7. Wang, L.S., Lang, Z.X., Guo, T.M.: Measurement and correlation of the diffusion coefficients of carbon dioxide in liquid hydrocarbons under elevated pressures. Fluid Phase Equilibr. 117, 364–372 (1996)

    Article  CAS  Google Scholar 

  8. Ahmed, T., Nasrabadi, H., Firoozabadi, A.: Complex flow and composition path in CO2 injection schemes from density effects. Energy Fuel 26(7), 4590–4598 (2012)

    Article  CAS  Google Scholar 

  9. Civan, F., Rasmussen, M.L.: Determination of gas diffusion and interface-mass transfer coefficients for quiescent reservoir liquids. SPE J. 11(1), 71–79 (2006)

    Article  CAS  Google Scholar 

  10. Gholami, Y., Azin, R., Fatehi, R., Osfouri, S., Bahadori, A.: Prediction of carbon dioxide dissolution in bulk water under isothermal pressure decay at different boundary conditions. J. Mol. Liq. 202, 23–33 (2015)

    Article  CAS  Google Scholar 

  11. Rasmussen, M.L., Civan, F.: Parameters of gas dissolution in liquids obtained by isothermal pressure decay. AIChE J. 55(1), 9–23 (2009)

    Article  CAS  Google Scholar 

  12. Siuda, P., Sadlej, J.: Calculations of NMR properties for sI and sII clathrate hydrates of carbon dioxide. Chem. Phys. 433, 31–41 (2014)

    Article  CAS  Google Scholar 

  13. Bahar, M.M., Liu, K.: Measurement of the diffusion coefficient of CO2 in formation water under reservoir conditions: implications for CO2 storage. In: SPE Asia Pacific Oil and Gas Conference and Exhibition, pp 1–8. Society of Petroleum Engineers, Perth, Australia (2008)

  14. Nazari Moghaddam, R., Rostami, B., Pourafshary, P., Fallahzadeh, Y.: Quantification of density-driven natural convection for dissolution mechanism in CO2 sequestration. Transp. Porous Med. 92(2), 439–456 (2012)

    Article  CAS  Google Scholar 

  15. Yang, C., Gu, Y.: Accelerated mass transfer of CO2 in reservoir brine due to density-driven natural convection at high pressures and elevated temperatures. Ind. Eng. Chem. Res. 45(8), 2430–2436 (2006)

    Article  CAS  Google Scholar 

  16. Renner, T.A.: Measurement and correlation of diffusion coefficients for CO2 and rich-gas applications. SPE Reserv. Eng. 3(2), 517–523 (1988)

    Article  CAS  Google Scholar 

  17. Zhang, Y.P., Hyndman, C.L., Maini, B.B.: Measurement of gas diffusivity in heavy oils. J. Pet. Sci. Eng. 25(1–2), 37–47 (2000)

    Article  Google Scholar 

  18. Zhao, R.B., Ao, W.J., Xiao, A.G., Yan, W., Yu, Z.H., Xia, X.T.: Diffusion law and measurement of variable diffusion coefficient of CO2 in oil. J. China Univ. Pet. 40(3), 7 (2016)

    Google Scholar 

  19. Crank, J.: The mathematics of diffusion, 2nd edn. Wseas Trans. Syst. Control 8(3), 625–626 (1975)

    Google Scholar 

  20. Tharanivasan, A.K., Yang, C., Gu, Y.: Measurements of molecular diffusion coefficients of carbon dioxide, methane, and propane in heavy oil under reservoir conditions. Energy Fuel 20(6), 2509–2517 (2006)

    Article  CAS  Google Scholar 

  21. Lee, B.I., Kesler, M.G.: A generalized thermodynamic correlation based on three-parameter corresponding states. AIChE J. 21(3), 510–527 (1975)

    Article  CAS  Google Scholar 

  22. Hirai, S., Okazaki, K., Yazawa, H., Ito, H., Tabe, Y., Hijikata, K.: Measurement of CO2 diffusion coefficient and application of LIF in pressurized water. Energy 22(2), 363–367 (1997)

    Article  CAS  Google Scholar 

  23. Tewes, F., Boury, F.: Formation and rheological properties of the supercritical CO2–water pure interface. J. Phys. Chem. B 109(9), 3990–3997 (2005)

    Article  CAS  Google Scholar 

  24. Belgodere, C., Dubessy, J., Vautrin, D., Caumon, M.-C., Sterpenich, J., Pironon, J., Robert, P., Randi, A., Birat, J.-P.: Experimental determination of CO2 diffusion coefficient in aqueous solutions under pressure at room temperature via Raman spectroscopy: impact of salinity (NaCl). J. Raman Spectrosc. 46(10), 1025–1032 (2015)

    Article  CAS  Google Scholar 

  25. Sell, A., Fadaei, H., Kim, M., Sinton, D.: Measurement of CO2 diffusivity for carbon sequestration: a microfluidic approach for reservoir-specific analysis. Environ. Sci. Technol. 47(1), 71–78 (2013)

    Article  CAS  Google Scholar 

  26. Moffat, R.J.: Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1, 3–17 (1988)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Song Guixue for many valuable comments. This work was supported by the National Development Scheme of Key Fundamental Research of China (973 Project, No. 2015CB250904) and National Natural Science Foundation of China (NNSFC, No. 51274217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renbao Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Xu, M., Yang, J. et al. Non-constant Diffusion Behavior for CO2 Diffusion into Brine: Influence of Density-Driven Convection. J Solution Chem 47, 1926–1941 (2018). https://doi.org/10.1007/s10953-018-0818-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0818-9

Keywords

Navigation