Skip to main content
Log in

The Solubility Parameter of Carbon Dioxide and Its Solubility in Ionic Liquids

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Carbon dioxide as a solute interacts with solvents mainly via dispersion forces. Its Hildebrand solubility parameter, δH, may therefore be used to predict its dissolution. The usual definition of δH, involving ΔvH, the molar enthalpy of vaporization, is inapplicable for carbon dioxide, it being a gas at the temperatures of technical interest (298 ≤ T/K ≤ 333). The ability of CO2 to accept hydrogen bonds from donor solvents and its appreciable polarizability justify the determination of its Hansen solubility parameters. The definite equation of state of CO2 reported by Span and Wagner permits the determination of the required parameters. The solubility of gaseous carbon dioxide in ionic liquids (room temperature ionic liquids and deep eutectic solvents) has been extensively studied and is discussed in the light of the above statements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

1-Me-3-Me-imidazolium:

1-Methyl-3-methylimidazolium

1-Et-3-Me-imidazolium:

1-Ethyl-3-methylimidazolium

1-HOEt-3-Me-imidazolium:

1-(2-Hydrohyethyl)-3-methylimidazolium

1-Pr-3-Me-imidazolium:

1-Propyl-3-methylimidazolium

1-Allyl-3-Me-imidazolium:

1-Allyl-3-methylimidazolium

1-Bu-3-Me-imidazolium:

1-Butyl-3-methylimidazolium

1-Hx-3-Me-imidazolium:

1-Hexyl-3-methylimidazolium

1-Oc-3-Me-imidazolium:

1-Octyl-3-methylimidazolium

1-C8H4F13-3-Me-imidazolium:

1-Tridecafluorooctyl-3-methylimidazolium

1-Dc-3-Me-imidazolium:

1-Decyl-3-methylimidazolium

Et3 sulfonium:

Triethylsulfonium

Me3Bu ammonium:

Butyltrimethylammonium

Me3Hx ammonium:

Hexyltrimethylammonium

Me3Dc ammonium:

Fecyltrimethylammonoium

Me2PrBu ammonium:

Butyl dimethylpropylammonium

Me2PrHx ammonium:

Hexyldimethylpropylammonium

Me2PrDc ammonium:

Decyldimethypropylammonium

Et3Hx ammonium:

Hexyltriethylammonium2

Bu3Me ammonium:

Methyltributylammonium

Oc3Me ammonium:

Methyltrioctylammonium

Et2Me(MeOEt)ammonium:

Methydiethyl(2-methoxyethyl)ammonium

Bu-pyridinium:

1-Butylpyridinium

Bu(4Me)pyridinium:

1-Butyl-4-methylpyridinium

Hx(Me)pyridinium:

1-Hexyl-4-methylpyridinium

1-Bu-1-Mepyrrollidinium:

1-Butyl-1-methylpyrrolidinium

EtBu3 phosphonium:

Ethyltriputylphosphonium

TdBu3 phosphononium:

Tetradecyltributylphosphonium

TdHx3 phosphononium:

Tetradecyltrihexylphosphonium

DoPhSO3 :

4-Dodecylbenzenesulfonate

Et2HPO4 :

Diethyl hydrogenphosphate

MeSO3 :

Methylsulfonate

NTF2 :

Bis(trifluoromethylsulfonyl)amide

References

  1. Metz, B., Davidson, O., De Coninck, H., Loos, M., Meyer, L. (eds.): IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  2. Sarmad, S., Mikkola, J.-P., Ji, X.: Carbon dioxide capture with ionic liquids and deep eutectic solvents: a new generation of sorbents. Chemsuschem 10, 324–352 (2017)

    Article  CAS  PubMed  Google Scholar 

  3. Marcus, Y.: Gas solubility in deep eutectic solvents. Monatsh. Chem. 149, 211–217 (2018)

    Article  CAS  Google Scholar 

  4. Hansen, C.H.: Hansen Solubility Parameters, 2nd edn. CRC/Taylor and Francis, Boca Raton (2007)

    Book  Google Scholar 

  5. Marcus, Y.: The solubility parameter of carbon dioxide—an enigma. ACS Omega 3, 524–528 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Span, R., Wagner, W.: A new equation of state for carbon dioxide covering the fluid region from the triple point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 25, 1509–1596 (1996)

    Article  CAS  Google Scholar 

  7. Marcus, Y.: Solubility parameters of permanent gases. J. Chem. (2016). https://doi.org/10.1155/2016/4701919

    Article  Google Scholar 

  8. Williams, L.L.: Solubility parameters of carbon dioxide, chap. 10. In: Hansen, C.M. (ed.) Hansen Solubility Parameters. A User’s Handbook, 2nd edn. Taylor and Francis, Hoboken (2007)

    Google Scholar 

  9. Marcus, Y.: Are solubility parameters relevant for the solubility of liquid organic solutes in room temperature ionic liquids? J. Mol. Liq. 214, 31–36 (2016)

    Article  CAS  Google Scholar 

  10. Marcus, Y.: Room temperature ionic liquids: their cohesive energies, solubility parameters and solubilities in them. J. Solution Chem. 46, 1778–1791 (2017)

    Article  CAS  Google Scholar 

  11. Torralba-Calleja, E., Skinner, J., Gutierrez-Tauste, D.: CO2 capture in ionic liquids: a review of solubilities and experimental methods. J. Chem. 2013, 473584/1–16 (2013)

  12. Zaitsau, D.H., Yermatayeu, A.V., Emel’yanenko, V.N., Schukz, A., Verevkin, S.P.: Thermochemistry of pyridinium based ionic liquids with tetrafluoroborate anion. Z. Anorg. Allgem. Chem. 643, 87–92 (2017)

    Article  CAS  Google Scholar 

  13. Schröder, B., Coutinho, J.A.P.: predicting enthalpies of vaporization of aprotic ionic liquids with COSMO-RS. Fluid Phase Equilib. 370, 24–33 (2014)

    Article  CAS  Google Scholar 

  14. Sistla, Y.S., Jain, L., Khanna, A.: Validation and prediction of solubility parameters of ionic liquids for CO2 capture. Sep. Purif. Technol. 97, 51–64 (2012)

    Article  CAS  Google Scholar 

  15. Finotello, A., Bara, J.E., Camper, D., Noble, R.D.: Room-temperature ionic liquids: temperature dependence of gas solubility. J. Chem. Eng. Data 47, 3453–3459 (2008)

    CAS  Google Scholar 

  16. Caena, C., Anthony, J.L., Shan, J.K., Morrow, T.I., Brennecke, J.F., Maginn, E.J.: Why is CO2 so soluble in imidazolium-based ionic liquids. J. Am. Chem. Soc. 128, 5300–5308 (2004)

    Google Scholar 

  17. Kilaru, P.K., Scovazzo, P.: Correlations of low pressure carbon dioxide and hydrocarbon solubilities in imidazolium-, phosphonium-, and ammonium-based room temperature ionic liquids. Part 2. Using activation energy of viscosity. Ind. Eng. Chem. 47, 910–919 (2008)

    Article  CAS  Google Scholar 

  18. Shin, E.-K., Lee, B.-C.: High pressure phase behavior of carbon dioxide with ionic liquids: 1-alkyl-3-methylimidazolium trifluoromethanesulfonate. J. Chem. Eng. Data 53, 2728–2734 (2008)

    Article  CAS  Google Scholar 

  19. Camper, D., Becker, C., Koval, C., Noble, R.: Low pressure hydrocarbon solubility in room temperature ionic liquids containing imidazolium rings interpreted using regular solution theory. Ind. Eng. Chem. Res. 44, 1928–1933 (2005)

    Article  CAS  Google Scholar 

  20. Soriano, A.N., Doma Jr., B.T., Li, M.-H.: Carbon dioxide solubility in some ionic liquids at moderate pressures. J. Taiwan Inst. Chem. Eng. 40, 387–393 (2009)

    Article  CAS  Google Scholar 

  21. Jalili, A.H., Mehdizadeh, A., Shokouhi, M., Ahmadi, A.N., Hosseini-Jenab, M., Fateminassab, F.: Solubility and diffusion of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. J. Chem. Thermodyn. 42, 1298–1303 (2010)

    Article  CAS  Google Scholar 

  22. Jalili, A.H., Shokouhi, M., Maurer, G., Hosseini-Jenab, M.: Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluoro-phosphate. J. Chem. Thermodyn. 67, 55–62 (2013)

    Article  CAS  Google Scholar 

  23. Shokouhi, M., Adibi, M., Jalili, A.H., Hosseini-Jenab, M., Mehdizadeh, A.: Solubility and diffusion of CO2 and H2S in the ionic liquid 1-(2-hydroxoethyl)-3-methylimidazo-lium tetrafluoroborate. J. Chem. Eng. Data 55, 1663–1668 (2010)

    Article  CAS  Google Scholar 

  24. Jalili, A.H., Mehdizadeh, A., Shokouhi, M., Sachaeinia, M., Taghikhani, V.: Solubility of CO2 in 1-(2-hydroxoethyl)-3-methylimidazolium ionic liquids with different anions. J. Chem. Thermodyn. 42, 787–791 (2010)

    Article  CAS  Google Scholar 

  25. Nonthanasin, T., Henni, A., Saiwan, C.: Densities and low pressure solubilities of carbon dioxide in five promising ionic liquids. RSC Adv. 4, 7566–7578 (2014)

    Article  CAS  Google Scholar 

  26. Zhang, J., Zhang, Q., Qiao, B., Deng, Y.: Solubilities of the gaseous and liquid solutes and their thermodynamics of solubilization in the novel room-temperature ionic liquids at infinite dilution by gas chromatography. J. Chem. Eng. Data 52, 2277–2283 (2007)

    Article  CAS  Google Scholar 

  27. Anderson, J.L., Dixon, J.K., Brennecke, J.F.: Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-hextyl-3-methylpyridinium bus(trifluoromethylsulfonyl)imide: comparison with other ionic liquids. Acc. Chem. Res. 40, 1206–1216 (2007)

    Article  CAS  Google Scholar 

  28. Jacquemin, J., Costa Gomes, M.F., Husson, P., Majer, V.: Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monioxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K And 343 k and at pressures close to atmospheric. J. Chem. Thermodyn. 38, 190–502 (2006)

    Article  CAS  Google Scholar 

  29. Anthony, J.L., Maginn, E.J., Brennecke, J.F.: Solubilities and thermodynamic properties of gases in the ionic liquid 1-N-butyl-3-methylimidazolium hexafluorophosphate. J. Phys. Chem. B 106, 7315–7320 (2002)

    Article  CAS  Google Scholar 

  30. Jacquemin, J., Husson, P., Majer, V., Costa Gomes, M.F.: Low pressure solubility and thermodynamics of solvation of eight gases in 1-butyl-3-methylimidazolium hexafluorophosphate. Fluid Phase Equilib. 240, 87–95 (2006)

    Article  CAS  Google Scholar 

  31. Blanchard, L.A., Gu, Z., Brennecke, J.F.: High pressure phase behavior of ionic liquid/CO2 systems. J. Phys. Chem. B 105, 2437–2444 (2001)

    Article  CAS  Google Scholar 

  32. Muldoon, M.J., Aki, S.N.V.K., Anderson, J.L., Dixon, J.K., Brennecke, J.F.: Improving carbon dioxide solubility in ionic liquids. J. Phys. Chem. B 111, 9001–9009 (2007)

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, X., Liu, Z., Wang, W.: Screening of ionic liquids to capture CO2 by COSMO-RS experiments. AIChE J. 54, 2717–2729 (2008)

    Article  CAS  Google Scholar 

  34. Almantariotis, D., Gefflaut, T., Padua, A.A.H., Coxam, J.-Y., Costa Gomes, M.F.: Effect of fluorination and size of the alkyl side-chain on the solubility of carbon dioxide in 1-alky;-3-methylimidazolium bis(trifluoromethylsulfobyl)amide ionic liquids. J. Phys. Chem. B 114, 3608–3617 (2010)

    Article  CAS  PubMed  Google Scholar 

  35. Jalili, A.H., Safavi, M., Ghotbi, C., Mehdizadeh, A., Hosseini-Jenab, M., Taghikhani, V.: Solubility and diffusion of CO2 and H2S and their mixtures in the ionic liquid 1-octyl-3-methylimidazolium bis(trifluoromethyl)sulfoylimide. J. Phys. Chem. B 116, 2758–2774 (2012)

    Article  CAS  PubMed  Google Scholar 

  36. Condemarin, R., Scovazzo, P.: Gas permeabilities, solubilities, diffusivities, and diffusivity correlations for ammonium-based room temperature ionic liquids with comparison to imidazolium and phosphonium RTIL data. Chem. Eng. J. 147, 51–57 (2009)

    Article  CAS  Google Scholar 

  37. Stevanovic, S., Costa Gomes, M.F.: Solubility of carbon dioxide, nitrous oxide, etyhane and nitrogen in 1-butyl-1-methylpyrrolidinium and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate (Efap) ionic liquids. J. Chem. Thermodyn. 59, 65–71 (2013)

    Article  CAS  Google Scholar 

  38. Carvalho, P.J., Alvarez, V.H., Marrucho, I.M., Aznar, M., Coutinho, J.A.P.: High carbon dioxide solubilities in trihexyltetradecylphosphonium-based ionic liquids. J. Supercrit. Fluids 52, 258–265 (2010)

    Article  CAS  Google Scholar 

  39. Zhang, S., Chen, Y., Ren, R.X.-F., Zhang, Y., Zhang, J., Zhang, X.: Solubility of CO2 in sulfonate ionic liquids at high pressure. J. Chem. Eng. Data 50, 230–233 (2005)

    Article  CAS  Google Scholar 

  40. Barton, A.F.M.: CRC Handbook of Solubility Parameters and Other Cohesion Parameters. CRC Press, Boca Raton (1983)

    Google Scholar 

  41. Yim, J.-H., Ha, S.-J., Lim, J.S.: Measurement and Correlation of CO2 solubility in 1-ethyl-3-methylimidazolium ([EMIM]) cation-based ionic liquids: [EMIM][Ac], [EMIM][Cl], and [EMIM][MeSO4]. J. Chem. Eng. Data 63, 508–518 (2018)

    Article  CAS  Google Scholar 

  42. Yim, J.-H., Ha, S.-J., Lim, J.S.: Measurement and correlation of CO2 solubility in 1-butyl-3-methylimidazolium ([BMIM]) cation-based ionic liquids: [BMIM][Ac], [BMIM][Cl], [BMIM][MeSO4]. J. Supercrit. Fluids 138, 73–91 (2018)

    Article  CAS  Google Scholar 

  43. Vetere, A.: An empirical method to evaluate the solubility of several gases in polar and non-polar solvents. Fluid Phase Equilib. 132, 77–91 (1997)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizhak Marcus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcus, Y. The Solubility Parameter of Carbon Dioxide and Its Solubility in Ionic Liquids. J Solution Chem 48, 1025–1034 (2019). https://doi.org/10.1007/s10953-018-0816-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0816-y

Keywords

Navigation