Skip to main content
Log in

Cucurbit[7]uril Inclusion Complexes with Benzimidazole Derivatives: A Computational Study

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulations were carried out to study the host–guest complexation in aqueous solution between cucurbit[7]uril (CB7) and the neutral and protonated forms of benzimidazole derivatives. Complexation occurs via encapsulation of the hydrophobic part (benzene ring) of the guest within the CB7 hydrophobic cavity, and the interactions of the amine group(s) of the imidazole ring of the guest with the CB7 carbonyl portals. The molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) method is used to estimate the host–guest Gibbs energy of binding. The results indicate that CB7 binds the protonated form more strongly than the neutral one, and that the dominant contribution to the Gibbs energy of complexation for the neutral and protonated guests is associated, respectively, with the host–guest van der Waals and electrostatic interactions. Quantum chemical calculations using dispersion-corrected density functional theory (DFT) are used to calculate the binding affinities and to predict the pKa values of the free and complexed guests. The calculated pKa values for the free guests reveal excellent agreement with the experimental values, while for the complexed guests, general trends are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Freeman, W.A., Mock, W.L., Shih, N.Y.: Cucurbituril. J. Am. Chem. Soc. 103(24), 7367–7368 (1981). https://doi.org/10.1021/ja00414a070

    Article  CAS  Google Scholar 

  2. Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K., Kim, K.: New cucurbituril homologues: syntheses, isolation, characterization, and x-ray crystal structures of cucurbit[n]uril (x = 5, 7, and 8). J. Am. Chem. Soc. 122(3), 540–541 (2000). https://doi.org/10.1021/ja993376p

    Article  CAS  Google Scholar 

  3. Lee, J.W., Samal, S., Selvapalam, N., Kim, H.-J., Kim, K.: Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc. Chem. Res. 36(8), 621–630 (2003). https://doi.org/10.1021/ar020254k

    Article  CAS  PubMed  Google Scholar 

  4. Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44(31), 4844–4870 (2005). https://doi.org/10.1002/anie.200460675

    Article  CAS  Google Scholar 

  5. Márquez, C., Hudgins, R.R., Nau, W.M.: Mechanism of host–guest complexation by cucurbituril. J. Am. Chem. Soc. 126(18), 5806–5816 (2004). https://doi.org/10.1021/ja0319846

    Article  CAS  PubMed  Google Scholar 

  6. Florea, M., Nau, W.M.: Strong binding of hydrocarbons to cucurbituril probed by fluorescent dye displacement: a supramolecular gas-sensing ensemble. Angew. Chem. Int. Ed. 50(40), 9338–9342 (2011). https://doi.org/10.1002/anie.201104119

    Article  CAS  Google Scholar 

  7. Mock, W.L., Shih, N.Y.: Structure and selectivity in host–guest complexes of cucurbituril. J. Org. Chem. 51(23), 4440–4446 (1986). https://doi.org/10.1021/jo00373a018

    Article  CAS  Google Scholar 

  8. Assaf, K.I., Nau, W.M.: Cucurbiturils as fluorophilic receptors. Supramol. Chem. 26, 657–669 (2014). https://doi.org/10.1080/10610278.2014.929130

    Article  CAS  Google Scholar 

  9. Assaf, K.I., Nau, W.M.: Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 44(2), 394–418 (2015). https://doi.org/10.1039/c4cs00273c

    Article  CAS  PubMed  Google Scholar 

  10. Barrow, S.J., Kasera, S., Rowland, M.J., del Barrio, J., Scherman, O.A.: Cucurbituril-based molecular recognition. Chem. Rev. 115(22), 12320–12406 (2015). https://doi.org/10.1021/acs.chemrev.5b00341

    Article  CAS  PubMed  Google Scholar 

  11. Cao, L.P., Sekutor, M., Zavalij, P.Y., Mlinaric-Majerski, K., Glaser, R., Isaacs, L.: Cucurbit[7]uril guest pair with an attomolar dissociation constant. Angew. Chem. Int. Ed. 53(4), 988–993 (2014). https://doi.org/10.1002/anie.201309635

    Article  CAS  Google Scholar 

  12. Masson, E., Ling, X.X., Joseph, R., Kyeremeh-Mensah, L., Lu, X.Y.: Cucurbituril chemistry: a tale of supramolecular success. RSC Adv. 2(4), 1213–1247 (2012). https://doi.org/10.1039/C1ra00768h

    Article  CAS  Google Scholar 

  13. Ghosh, I., Nau, W.M.: The strategic use of supramolecular pKa shifts to enhance the bioavailability of drugs. Adv. Drug Deliv. Rev. 64(9), 764–783 (2012). https://doi.org/10.1016/j.addr.2012.01.015

    Article  CAS  PubMed  Google Scholar 

  14. Danaher, M., De Ruyck, H., Crooks, S.R.H., Dowling, G., O’Keeffe, M.: Review of methodology for the determination of benzimidazole residues in biological matrices. J. Chromatogr. B 845(1), 1–37 (2007). https://doi.org/10.1016/j.jchromb.2006.07.046

    Article  CAS  Google Scholar 

  15. Tang, B., Wang, X., Liang, H., Jia, B., Chen, Z.: Study on the supramolecular interaction of thiabendazole and β-cyclodextrin by spectrophotometry and its analytical application. J. Agric. Food Chem. 53(22), 8452–8459 (2005). https://doi.org/10.1021/jf051683a

    Article  CAS  PubMed  Google Scholar 

  16. Melo, M.J., Maçanita, A.L., Melo, E., Wamhoff, H., Pina, F.: Photophysical properties and photodegradation mechanism of 2-(2′-furanyl)-1H-benzimidazole (fuberidazole). J. Photochem. Photobiol. A Chemistry 83(3), 237–244 (1994). https://doi.org/10.1016/1010-6030(94)03831-7

    Article  CAS  Google Scholar 

  17. MacGillivray, B.C., Macartney, D.H.: Complexations of the hydrophilic and hydrophobic moieties of benzethonium chloride by cucurbit[7]uril in aqueous solution. Can. J. Chem. 90(10), 851–857 (2012). https://doi.org/10.1139/v2012-078

    Article  CAS  Google Scholar 

  18. Koner, A.L., Ghosh, I., Saleh, N.I., Nau, W.M.: Supramolecular encapsulation of benzimidazole-derived drugs by cucurbit[7]uril. Can. J. Chem. 89(2), 139–147 (2011). https://doi.org/10.1139/V10-079

    Article  CAS  Google Scholar 

  19. Shaikh, M., Dutta Choudhury, S., Mohanty, J., Bhasikuttan, A.C., Nau, W.M., Pal, H.: Modulation of excited-state proton transfer of 2-(2′-hydroxyphenyl)benzimidazole in a macrocyclic cucurbit[7]uril host cavity: dual emission behavior and pKa shift. Chem. Eur. J. 15(45), 12362–12370 (2009). https://doi.org/10.1002/chem.200900390

    Article  CAS  PubMed  Google Scholar 

  20. Saleh, N., Koner, A.L., Nau, W.M.: Activation and stabilization of drugs by supramolecular pK(a) shifts: drug-delivery applications tailored for cucurbiturils. Angew. Chem. Int. Ed. 47(29), 5398–5401 (2008). https://doi.org/10.1002/anie.200801054

    Article  CAS  Google Scholar 

  21. El-Barghouthi, M.I., Assaf, K.I., Rawashdeh, A.M.M.: Molecular dynamics of methyl viologen–cucurbit[n]uril complexes in aqueous solution. J. Chem. Theory Comput. 6(4), 984–992 (2010). https://doi.org/10.1021/ct900622h

    Article  CAS  Google Scholar 

  22. Malhis, L.D., Bodoor, K., Assaf, K.I., Al-Sakhen, N.A., El-Barghouthi, M.I.: Molecular dynamics simulation of a cucurbituril based molecular switch triggered by pH changes. Compt. Theor. Chem. 1066, 104–112 (2015). https://doi.org/10.1016/j.comptc.2015.05.010

    Article  CAS  Google Scholar 

  23. El-Barghouthi, M.I., Abdel-Halim, H.M., Haj-Ibrahim, F.J., Bodoor, K., Assaf, K.I.: Molecular dynamics of nor-seco-cucurbit[10]uril complexes. J. Incl. Phenom. Macrocycl. Chem. 82(3), 323–333 (2015). https://doi.org/10.1007/s10847-015-0488-9

    Article  CAS  Google Scholar 

  24. El-Barghouthi, M.I., Abdel-Halim, H.M., Haj-Ibrahim, F.J., Assaf, K.I.: Molecular dynamics simulation study of the structural features and inclusion capacities of cucurbit[6]uril derivatives in aqueous solutions. Supramol. Chem. 27(1–2), 80–89 (2015). https://doi.org/10.1080/10610278.2014.910601

    Article  CAS  Google Scholar 

  25. Chen, S., Han, Z., Zhang, D., Zhan, J.: Theoretical study of the inclusion complexation of TCDD with cucurbit[n]urils. RSC Adv. 4(94), 52415–52422 (2014). https://doi.org/10.1039/C4RA06011C

    Article  CAS  Google Scholar 

  26. Gilson, M.K.: Stress analysis at the molecular level: a forced cucurbituril–guest dissociation pathway. J. Chem. Theory Comput. 6(3), 637–646 (2010). https://doi.org/10.1021/ct900668k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fileti, E., Colherinhas, G., Malaspina, T.: Predicting the properties of a new class of host–guest complexes: C60 fullerene and CB[9] cucurbituril. Phys. Chem. Chem. Phys. 16(41), 22823–22829 (2014). https://doi.org/10.1039/C4CP03299C

    Article  CAS  PubMed  Google Scholar 

  28. Fenley, A.T., Henriksen, N.M., Muddana, H.S., Gilson, M.K.: Bridging calorimetry and simulation through precise calculations of cucurbituril–guest binding enthalpies. J. Chem. Theory Comput. 10(9), 4069–4078 (2014). https://doi.org/10.1021/ct5004109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Venkataramanan, N.S., Ambigapathy, S.: Encapsulation of sulfur, oxygen, and nitrogen mustards by cucurbiturils: a DFT study. J. Incl. Phenom. Macrocycl. Chem. 83(3–4), 387–400 (2015). https://doi.org/10.1007/s10847-015-0575-y

    Article  CAS  Google Scholar 

  30. Kim, M.O., Blachly, P.G., Kaus, J.W., McCammon, J.A.: Protocols utilizing constant pH molecular dynamics to compute pH-dependent binding free energies. J. Phys. Chem. B 119(3), 861–872 (2015). https://doi.org/10.1021/jp505777n

    Article  CAS  PubMed  Google Scholar 

  31. Fatiha, M., Faiza, B., Ichraf, K., Leila, N., Eddine, K.D.: TD-DFT calculations of visible spectra and structural studies of carbendazim inclusion complex with cucurbit[7]uril. J. Taiwan Inst. Chem. Eng. 50(Supplement C), 37–42 (2015). https://doi.org/10.1016/j.jtice.2014.12.007

    Article  CAS  Google Scholar 

  32. Shewale, M.N., Lande, D.N., Gejji, S.P.: Encapsulation of benzimidazole derivatives within cucurbit[7]uril: Density functional investigations. J. Mol. Liq. 216(Supplement C), 309–317 (2016). https://doi.org/10.1016/j.molliq.2015.12.076

    Article  CAS  Google Scholar 

  33. Case, D.A., Darden, T.A., Cheatham III, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Walker, R.C., Zhang, W., Merz, K.M., Roberts, B., Wang, B., Hayik, S., Roitberg, A., Seabra, G., Kolossváry, I., Wong, K.F., Paesani, F., Vanicek, J., Liu, J., Wu, X., Brozell, S.R., Steinbrecher, T., Gohlke, H., Cai, Q., Ye, X., Wang, J., Hsieh, M.-J., Cui, G., Roe, D.R., Mathews, D.H., Seetin, M.G., Sagui, C., Babin, V., Luchko, T., Gusarov, S., Kovalenko, A., Kollman, P.A.: AMBER 11. University of California, San Francisco (2010)

    Google Scholar 

  34. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development and testing of a general amber force field. J. Comput. Chem. 25(9), 1157–1174 (2004). https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  35. Bayly, C.I., Cieplak, P., Cornell, W., Kollman, P.A.: A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97(40), 10269–10280 (1993). https://doi.org/10.1021/j100142a004

    Article  CAS  Google Scholar 

  36. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2), 926–935 (1983). https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  37. York, D.M., Darden, T.A., Pedersen, L.G.: The effect of long-range electrostatic interactions in simulations of macromolecular crystals: a comparison of the Ewald and truncated list methods. J. Chem. Phys. 99(10), 8345–8348 (1993). https://doi.org/10.1063/1.465608

    Article  CAS  Google Scholar 

  38. Ryckaert, J.-P., Ciccotti, G., Berendsen, H.J.C.: Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23(3), 327–341 (1977). https://doi.org/10.1016/0021-9991(77)90098-5

    Article  CAS  Google Scholar 

  39. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graphics 14(1), 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  40. Rawashdeh, A.M.M., El-Barghouthi, M.I., Assaf, K.I., Al-Gharabli, S.I.: Complexation of N-methyl-4-(p-methyl benzoyl)-pyridinium methyl cation and its neutral analogue by cucurbit[7]uril and beta-cyclodextrin: a computational study. J. Incl. Phenom. Macrocycl. Chem. 64(3–4), 357–365 (2009). https://doi.org/10.1007/s10847-009-9574-1

    Article  CAS  Google Scholar 

  41. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford (2009)

  42. Muckerman, J.T., Skone, J.H., Ning, M., Wasada-Tsutsui, Y.: Toward the accurate calculation of pKa values in water and acetonitrile. Biochim. Biophys. Acta 1827(8), 882–891 (2013). https://doi.org/10.1016/j.bbabio.2013.03.011

    Article  CAS  PubMed  Google Scholar 

  43. Assaf, K.I., Qaroush, A.K., Eftaiha, E.A.F.: New insights into the chemistry of ionic alkylorganic carbonates: a computational study. Phys. Chem. Chem. Phys. 19(23), 15403–15411 (2017). https://doi.org/10.1039/C7CP02087B

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khaleel I. Assaf, Khaled Bodoor or Musa I. El-Barghouthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albdallah, S.K., Assaf, K.I., Bodoor, K. et al. Cucurbit[7]uril Inclusion Complexes with Benzimidazole Derivatives: A Computational Study. J Solution Chem 47, 1768–1778 (2018). https://doi.org/10.1007/s10953-018-0812-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0812-2

Keywords

Navigation