Skip to main content
Log in

pH-Dependent Antibiotic Gatifloxacin Interacting with Cationic Surfactant: Insights from Spectroscopic and Chromatographic Measurements

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Microheterogeneous surfactant assemblies solubilize and encapsulate active drug molecules and consequently protect them from the adverse environmental conditions. As pseudo-models of biological membranes the associated structures of surfactant molecule are also very handy for investigators to discern their roles in cellular interactions. The present study reveals the molecular interaction of a potential antibiotic, Gatifloxacin (GTF), with cetyltrimethylammonium bromide (CTAB, a quaternary ammonium surfactant) at physiological pH. Chromatographic and spectral–luminescent measurements were performed to probe the GTF–CTAB association and drug–surfactant interaction modes which were quantified by estimating the binding capacities (Kb) and related Gibbs energies at various pH values. The binding values of GTF–CTAB obtained from micellar liquid chromatography measurements are found to be in good agreement with those measured by electronic spectroscopy. Moreover, the data obtained from molecular electrostatic potentials revealed that the slightly basic medium (pH = 7.4) induces hydrophilic character in GTF molecules that may dynamically assist the incorporation of drug molecules into the outer core in the palisade layer of CTAB micelles, which favors penetration binding. In addition to electrostatic intermolecular forces, the hydrophobic aggregates of surfactant molecules are also found to aid solubilization of GTF in the aggregate’s corona, which may result in controlled release of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Demetzos, C.: Biophysics and thermodynamics: the scientific building blocks of bio-inspired drug delivery nano systems. AAPS PharmSciTech 16, 491–495 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tourné-Péteilha, C., Coasneabc, B., Inde, M., Breveta, D., Devoissellea, J.M., Viouxa, A., Viau, L.: Surfactant behavior of ionic liquids involving a drug: from molecular interactions to self-assembly. Langmuir 30, 1229–1238 (2014)

    Article  CAS  Google Scholar 

  3. Chen, Y., Liu, L.: Modern methods for delivery of drugs across the blood–brain barrier. Adv. Drug Deliv. Rev. 64, 640–665 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. Wang, J., Wang, Y., Liang, W.: Delivery of drugs to cell membranes by encapsulation in PEG–PE micelles. J. Control. Release 160, 637–651 (2012)

    Article  CAS  PubMed  Google Scholar 

  5. Nazar, M.F., Mukhtar, F., Ashfaq, M., Rahman, H.M.A., Zafar, M.N., Sumrra, S.H.: Physicochemical investigation of antibacterial moxifloxacin interacting with quaternary ammonium disinfectants. Fluid Phase Equilib. 406, 47–54 (2015)

    Article  CAS  Google Scholar 

  6. Nazar, M.F., Mukhtar, F., Chaudry, S., Ashfaq, M., Mehmood, S., Asif, A., Rana, U.A.: Biophysical probing of antibacterial gemifloxacin assimilated in surfactant mediated molecular assemblies. J. Mol. Liq. 200, 361–368 (2014)

    Article  CAS  Google Scholar 

  7. Techen, A., Hille, C., Dosche, C., Kumke, M.U.: Fluorescence study of drug–carrier interactions in CTAB/PBS buffer model systems. J. Colloid Interface Sci. 377, 251–261 (2012)

    Article  CAS  PubMed  Google Scholar 

  8. Sharma, R., Mahajan, R.K.: An investigation of binding ability of ionic surfactants with trifluoperazine dihydrochloride: insights from surface tension, electronic absorption and fluorescence measurements. RSC Adv. 2, 9571–9583 (2012)

    Article  CAS  Google Scholar 

  9. Azeem, W., John, P., Nazar, M.F., Khan, I.U., Riaz, A., Sharif, S.: Spectral and chromatographic characterization of fixed dose combination norfloxacin and metronidazole interacting with cetyltrimethylammonium bromide. J. Mol. Liq. 244, 135–140 (2017)

    Article  CAS  Google Scholar 

  10. Seitkalieva, M.M., Kashin, A.S., Egorova, K.S., Ananikov, V.P.: Ionic liquids as tunable toxicity storage media for sustainable chemical waste management. ACS Sustain. Chem. Eng. 6, 719–726 (2018)

    Article  CAS  Google Scholar 

  11. Lopez, F., Cuomo, F., Ceglie, A., Ambrosone, L., Palazzo, G.: Quenching and dequenching of pyrene fluorescence by nucleotide monophosphates in cationic micelles. J. Phys. Chem. B. 112, 7338–7344 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. Bag, S.S., Kundu, R.: Sensing of micellar microenvironment with dual fluorescent probe, triazolylpyrene (TNDMBPy). J. Fluoresc. 23, 929–938 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. Nazar, M.F., Azeem, W., Rana, U.A., Ashfaq, M., Lashin, A., Al-Arifi, N., Rahman, H.M.A., Lazim, A.M., Mehmood, A.: pH-dependent probing of levofloxacin assimilated in surfactant mediated assemblies: Insights from photoluminescent and chromatographic measurements. J. Mol. Liq. 220, 26–32 (2016)

    Article  CAS  Google Scholar 

  14. Nazar, M.F., Raheel, M., Shah, S.S., Danish, M., Ashfaq, M., Zafar, M.N.: Thermodynamic characteristics and spectral-luminescent properties of N-m-tolylbenzamide in microhetrogeneous surfactant self-assemblies. J. Solution Chem. 43, 632–647 (2014)

    Article  CAS  Google Scholar 

  15. Wang, J., Kong, L., Shen, W., Hu, X., Shen, Y., Liu, S.: Synergistic fluorescence quenching of quinolone antibiotics by palladium(II) and sodium dodecyl benzene sulfonate and the analytical application. Anal. Methods 6, 4343–4352 (2014)

    Article  CAS  Google Scholar 

  16. Shahabadi, N., Fili, S.M., Kheirdoosh, F.: Study on the interaction of the drug mesalamine with calf thymus DNA using molecular docking and spectroscopic techniques. J. Photochem. Photobiol. B 128, 20–26 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. Tu, S., Jiang, X., Zhou, L., Yin, W., Wang, H., Duan, M., Liu, P., Jiang, X.: Study of the interaction of gemini surfactant NAE12-4-12 with bovine serum albumin. J. Lumin. 132, 381–385 (2012)

    Article  CAS  Google Scholar 

  18. Duman, O., Tunc, S., Kancı, B.: Spectrophotometric studies on the interactions of C.I. Basic Red 9 and C.I. Acid Blue 25 with hexadecyltrimethylammonium bromide in cationic surfactant micelles. Fluid Phase Equilib. 301, 56–61 (2011)

    Article  CAS  Google Scholar 

  19. Din, K., Al-Ahmadi, M.D.A., Naqvi, A.Z., Akram, M.: Conductometric study of antidepressant drug–cationic surfactant mixed micelles in aqueous solution. Colloids Surf. B 64, 65–69 (2008)

    Article  CAS  Google Scholar 

  20. Alam, M.S., Ghosh, G., Mandal, A.B., Din, K.: Aggregation behavior and interaction of an amphiphilic drug imipramine hydrochloride with cationic surfactant cetyltrimethylammonium bromide: light scattering studies. Colloids Surf. B 88, 779–784 (2011)

    Article  CAS  Google Scholar 

  21. Fan, Y., Wu, C., Wang, M., Wang, Y., Thomas, R.K.: Self-assembled structures of anionic hydrophobically modified polyacrylamide with star-shaped trimeric and hexameric quaternary ammonium surfactants. Langmuir 30, 6660–6668 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. Rub, M.A., Asiri, A.M., Naqvi, A.Z., Rahman, M.M., Khan, S.B., Din, K.: Mixed micellization between amphiphilic drug promethazine hydrochloride and cationic surfactant (conventional as well as gemini). J. Mol. Liq. 177, 19–25 (2013)

    Article  CAS  Google Scholar 

  23. Ito, E., Yip, K.W., Katz, D., Fonseca, S.B., Hedley, D.W., Chow, S., Xu, G.W., Wood, T.E., Bastianutto, C., Schimmer, A.D., Kelley, S.O., Liu, F.F.: Potential use of cetrimonium bromide as an apoptosis-promoting anticancer agent for head and neck cancer. Mol. Pharmacol. 76, 969–983 (2009)

    Article  CAS  PubMed  Google Scholar 

  24. Peleg, A.Y., Seifert, H., Paterson, D.L.: Acinetobacter baumannii: emergence of a successful pathogen. Clin. Microbiol. Rev. 21, 538–582 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Giraud, I., Rapp, M., Maurizis, J.C., Madelmont, J.C.: Synthesis and in vitro evaluation of quaternary ammonium derivatives of chlorambucil and melphalan, anticancer drugs designed for the chemotherapy of chondrosarcoma. J. Med. Chem. 45, 2116–2119 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, E.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J., Gaussian 09 edn., Gaussian, Inc.: Wallingford CT (2009)

  27. Li, Y., Liu, Y.Y., Chen, X.J., Xiong, X.H., Li, F.S.: Synthesis, spectroscopic characterization, X-ray structure, and DFT calculations of some new 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxamides. PLoS ONE 9, e91361 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, Y., Zhang, H., Liu, Y.Y., Li, F.S., Liu, X.N.: Synthesis, characterization, and quantum chemical calculation studies on 3-(3-nitrophenylsulfonyl)aniline. J. Mol. Struct. 997, 110–116 (2011)

    Article  CAS  Google Scholar 

  29. Fukui, K.: Role of frontier orbitals in chemical reactions. Science 218, 747–754 (1982)

    Article  CAS  PubMed  Google Scholar 

  30. Boens, N., Wang, L., Leen, V., Yuan, P., Verbelen, B., Dehaen, W., der Auweraer, M.V., de Borggraeve, W.D., Meervelt, L.V., Jacobs, J., Beljonne, D., Tonnelé, C., Lazzaroni, R., Ruedas-Rama, M.J., Orte, A., Crovetto, L., Talavera, E.M., Alvarez-Pez, J.M.: 8-HaloBODIPYs and their 8-(C, N, O, S) substituted analogues: solvent dependent UV–Vis spectroscopy, variable temperature NMR, crystal structure determination, and quantum chemical calculations. J. Phys. Chem. A 118, 1576–1594 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. Kowalska, P., Gawinkowski, S., Sarma, T., Panda, P.K., Waluk, J.: Structure, electronic states, and anion-binding properties of cyclo[4]naphthobipyrroles. J. Phys. Chem. A 118, 1038–1046 (2014)

    Article  CAS  PubMed  Google Scholar 

  32. Mebi, C.A.: DFT study on structure, electronic properties, and reactivity of cis-isomers of [(NC5H4-S)2Fe(CO)2]. J. Chem. Sci. 123, 727–731 (2011)

    Article  CAS  Google Scholar 

  33. Fuentealba, P., David, J., Guerra, D.: Density functional based reactivity parameters: thermodynamic or kinetic concepts? J. Mol. Struct. THEOCHEM 943, 127–137 (2010)

    Article  CAS  Google Scholar 

  34. Parr, R.G., Donnelly, R.A., Levy, M., Palke, W.E.: Electronegativity: the density functional viewpoint. J. Chem. Phys. 68, 3801–3807 (1978)

    Article  CAS  Google Scholar 

  35. Parr, R.G., Szentpály, L.V., Liu, S.: Electrophilicity index. J. Am. Chem. Soc. 121, 1922–1924 (1999)

    Article  CAS  Google Scholar 

  36. Rosen, M.J., Kunjappu, J.T.: Surfactants and Interfacial Phenomena, 4th edn., pp. 150–225. Willey, Hoboken (2012)

    Book  Google Scholar 

  37. Zhou, T., Ao, M., Xu, G., Liu, T., Zhang, J.: Interactions of bovine serum albumin with cationic imidazolium and quaternary ammonium gemini surfactants: effects of surfactant architecture. J. Colloid Interface Sci. 389, 175–181 (2013)

    Article  CAS  PubMed  Google Scholar 

  38. Benesi, H.A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)

    Article  CAS  Google Scholar 

  39. Ahmad, B., Parveen, S., Khan, R.H.: Effect of albumin conformation on the binding of ciprofloxacin to human serum albumin: a novel approach directly assigning binding site. Biomacromol 7, 1350–1356 (2006)

    Article  CAS  Google Scholar 

  40. Jandera, P., Fischer, J.: Chromatographic behaviour in reversed-phase high-performance liquid chromatography with micellar and submicellar mobile phases. J. Chromatogr. A 728, 279–298 (1996)

    Article  CAS  Google Scholar 

  41. Čudina, O., Brborić, J., Janković, I., Karljiković-Rajić, K., Vladimirov, S.: Study of Valsartan interaction with micelles as a model system for biomembranes. Colloids Surf. B 65, 80–84 (2008)

    Article  CAS  Google Scholar 

  42. Pignatello, R., Musumeci, T., Basile, L., Carbone, C., Puglisi, G.: Biomembrane models and drug-biomembrane interaction studies: involvement in drug design and development. J. Pharm. Bioallied Sci. 3, 4–14 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tien, T.T.D., Uyen, P.N.D., Huong, T.B., Trang, T.N.: Effect of electrostatic interaction between fluoxetine and lipid membranes on the partitioning of fluoxetine investigated using second derivative spectrophotometry and FTIR. Chem. Phys. Lipids 207, 10–23 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Faculty of Chemistry, Gujrat University, Pakistan for providing laboratory facilities. The author also sincerely thanks the Pakistan Higher Education Commission for providing financial support through the NRPU 4557 Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Faizan Nazar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazar, M.F., Azeem, W., Kayani, A. et al. pH-Dependent Antibiotic Gatifloxacin Interacting with Cationic Surfactant: Insights from Spectroscopic and Chromatographic Measurements. J Solution Chem 48, 936–948 (2019). https://doi.org/10.1007/s10953-018-0811-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0811-3

Keywords

Navigation