Skip to main content

Advertisement

Log in

Ionic Liquids as Thermal Energy Storage Materials: On the Importance of Reliable Data Analysis in Assessing Thermodynamic Data

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In spite of many statements on the application potential of ionic liquids, these organic salts present both advantages and drawbacks for their possible use in real processes. Nevertheless, they are still an undeniably fascinating class of compounds, both from the fundamental point of view and as promising task-specific materials. For instance, reliable thermal property data seem to be significantly lacking for pure ionic liquids. In addition, to assess the application potential of any material or process, a reliable analysis of experimental data is of key importance, not only to obtain recommended data, but also to be able to identify patterns in structure–property relationships, even if those may not seem evident at first sight. The aim of this work is to assess the potential application of a series of 1-alkyl-3-methylimidazolium saccharinate ionic liquids (alkyl standing for butyl, hexyl, octyl, and decyl) in thermal energy storage. To this end, heat capacity and energy density were determined experimentally by means of differential scanning calorimetry (DSC) and oscillating-tube densitometry. The experimental data were then analyzed by means of advanced data analysis methods based on mathematical gnostics. Based on the thermodynamic data and theory of measurement, mathematical gnostics is a novel non-statistical approach towards data uncertainty. As such it enables us to evaluate measurement uncertainty of statistically non-significant data sets containing as few as four data points. Also, using robust regression algorithms along a gnostic influence function, functional dependencies and structure–property patterns can be reliably determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kirchner, B.: Ionic Liquids. In: Topics in Current Chemistry. Springer, Heidelberg (2010)

    Google Scholar 

  2. Holbrey, J.D., Rogers, R.D., Mantz, R.A., Trulove, P.C., Cocolia, V.A., Visser, J.L.: Physicochemical Properties, Ionic Liquids in Synthesis, pp. 57–174. Wiley, Weinheim (2008)

    Google Scholar 

  3. Smiglak, M., Reichert, W.M., Holbrey, J.D., Wilkes, J.S., Sun, L., Thrasher, J.S., Kirichenko, K., Singh, S., Katritzky, A.R., Rogers, R.D.: Combustible ionic liquids by design: is laboratory safety another ionic liquid myth? Chem. Commun. 24, 2554–2556 (2006)

    Article  CAS  Google Scholar 

  4. Pucheault, M., Vaultier, M.: Task specific ionic liquids and task specific onium salts. Top. Curr. Chem. 290, 83–126 (2010)

    Article  CAS  PubMed  Google Scholar 

  5. Bonhôte, P., Dias, A.P., Papageorgiou, N., Kalyanasundaram, K., Grätzel, M.: Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 35, 1168–1178 (1996)

    Article  PubMed  Google Scholar 

  6. Hallett, J.P., Welton, T.: Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev. 111, 3508–3576 (2011)

    Article  CAS  PubMed  Google Scholar 

  7. Opallo, M., Lesniewski, A.: A review on electrodes modified with ionic liquids. J. Electroanal. Chem. 656, 2–16 (2011)

    Article  CAS  Google Scholar 

  8. Larionova, J., Guari, Y., Tokarev, A., Chelebaeva, E., Luna, C., Sangregorio, C., Caneschi, A., Guérin, C.: Coordination polymer nano-objects into ionic liquids: nanoparticles and superstructures. Inorg. Chem. Acta 361, 3988–3996 (2008)

    Article  CAS  Google Scholar 

  9. Poole, C.F., Poole, S.K.: Ionic liquid stationary phases for gas chromatography. J. Sep. Sci. 34, 888–900 (2011)

    Article  CAS  PubMed  Google Scholar 

  10. Valkenburg, M.E., Vaughn, R.L., Williams, M., Wilkes, J.S.: Thermochemistry of ionic liquid heat-transfer fluids. Thermochim. Acta 425, 181–188 (2005)

    Article  CAS  Google Scholar 

  11. Abumandour, E.-S., Mutelet, F., Alonso, D.: Performance of an absorption heat transformer using new working binary systems composed of ionic liquid and water. Appl. Therm. Eng. 94, 579–589 (2016)

    Article  CAS  Google Scholar 

  12. Wang, M., Infante Ferreira, C.A.: Absorption heat pump cycles with NH3–ionic liquid working pairs. Appl. Energy 204, 819–830 (2017)

    Article  CAS  Google Scholar 

  13. Mehrkesh, A., Karunanithi, A.T.: Optimal design of ionic liquids for thermal energy storage. Comput. Chem. Eng. 93, 402–412 (2016)

    Article  CAS  Google Scholar 

  14. Smiglak, M., Pringle, J.M., Lu, X., Zhang, S., Gao, H., MacFarlane, D.R., Rogers, R.D.: Ionic liquids for energy, materials and medicine. Chem. Commun. 50, 9228–9250 (2014)

    Article  CAS  Google Scholar 

  15. Zhu, J., Bai, L., Chen, B., Fei, W.: Thermodynamical properties of phase change materials based on ionic liquids. Chem. Eng. J. 147, 58–62 (2009)

    Article  CAS  Google Scholar 

  16. Bhatt, V.D., Gohil, K., Mishra, A.: Thermal energy storage capacity of some phase changing materials and ionic liquids. Int. J. Chem. Tech. Res. 2, 1771–1779 (2010)

    CAS  Google Scholar 

  17. Bai, L., Li, X., Zhu, J., Chen, B.: Effects of nucleators on the thermodynamic properties of seasonal energy storage materials based on ionic liquids. Energy Fuels 25, 1811–1816 (2011)

    Article  CAS  Google Scholar 

  18. Oster, K., Goodrich, P., Jacquemin, J., Hardacre, C., Ribeiro, A.P.C., Elsinawi, A.: A new insight into pure and water-saturated quaternary phosphonium-based carboxylate ionic liquids: Density, heat capacity, ionic conductivity, thermogravimetric analysis, thermal conductivity and viscosity. J. Chem. Thermodyn. 121, 97–111 (2018)

    Article  CAS  Google Scholar 

  19. Oster, K., Jacquemin, J., Hardacre, C., Ribeiro, A.P.C., Elsinawi, A.: Understanding the heat capacity enhancement in ionic liquid-based nanofluids (ionanofluids). J. Mol. Liq. (2018). https://doi.org/10.1016/j.molliq.2018.01.025

    Article  Google Scholar 

  20. Oster, K., Jacquemin, J., Hardacre, C., Ribeiro, A.P.C., Elsinawi, A.: Further development of the predictive models for physical properties of pure ionic liquids: thermal conductivity and heat capacity. J. Chem. Thermodyn. 118, 1–15 (2018)

    Article  CAS  Google Scholar 

  21. Mahlia, T.M.I., Saktisahdan, T.J., Jannifar, A., Hasan, M.H., Matseelar, H.S.C.: A review of available methods and development on energy storage; technology update. Ren. Sust. Energy Rev. 33, 532–545 (2014)

    Article  Google Scholar 

  22. Ushak, S., Fernández, A.G., Grageda, M.: Using Molten Salts and Other Liquid Sensible Storage Media in Thermal Energy Storage (TES) Systems. In: Advances in Thermal Energy Storage Systems. Elsevier, New York (2015)

    Google Scholar 

  23. Zubeir, L.F., Rocha, M., Vergadou, A.A., Weggemans, W., Peristeras, M.A., Schulz, L.D., Economou, I.G., Kroon, M.C.: Thermophysical properties of imidazolium tricyanomethanide ionic liquids: experimental and molecular simulation. Phys. Chem. 18, 23121–23138 (2016)

    CAS  Google Scholar 

  24. Deetlefs, M., Fanselow, M., Seddon, K.R.: Ionic liquids: the view from Mount Improbable. RSC Adv. 6, 4280–4288 (2016)

    Article  CAS  Google Scholar 

  25. Liu, H., Maginn, E., Visser, A.E., Bridges, N.J., Fox, E.B.: Thermal and transport properties of six ionic liquids: an experimental and molecular dynamics study. Ind. Eng. Chem. Res. 51, 7242–7254 (2012)

    Article  CAS  Google Scholar 

  26. Andresová, A., Bendová, M., Schwarz, J., Wagner, Z., Feder-Kubis, J.: Influence of the alkyl length on the thermophysical properties of chiral ionic liquids with a (1R,2S,5R)-(—)-menthol substituent and data analysis by means of mathematical gnostics. J. Mol. Liq. 242, 336–348 (2017)

    Article  CAS  Google Scholar 

  27. Machanová, K., Wagner, Z., Andresová, A., Rotrekl, J., Jacquemin, J., Bendová, M.: Thermal properties of alkyl-triethylammonium bis{(trifluoromethyl)sulfonyl}imide ionic liquids. J. Solution Chem. 44, 790–810 (2015)

    Article  CAS  Google Scholar 

  28. Wagner, Z., Bendova, M., Rotrekl, J., Velisek, P., Storch, J., Uchytil, P., Setnickova, K., Reznickova, J.: Advanced analysis of isobaric heat capacities by mathematical gnostisc. J. Solution Chem. 46, 1836–1853 (2017)

    Article  CAS  Google Scholar 

  29. Kovanic P, Humber MB.: The Economics of Information—Mathematical Gnostics for Data Analysis Book, p. 717. http://www.math-gnostics.eu/books. Accessed 5 Sep 2015.

  30. Bogdanov, M., Petkova, D., Hristeva, S., Svinyarov, I., Kantlehner, W.: New guanidium-based room-temperature ionic liquids. Substituent and anion effect on density and solubility in water. Z. Naturforsch. 65, 37–48 (2010)

    Article  CAS  Google Scholar 

  31. Bogdanov, M.G., Svinyarov, I.: Efficient purification of halide-based ionic liquids by means of improved apparatus for continuous liquid–liquid extraction. Sep. Purif. Technol. 196, 57–60 (2018). https://doi.org/10.1016/j.seppur.2017.07.039

    Article  CAS  Google Scholar 

  32. Bogdanov, M.G., Svinyarov, I., Karemedchieva, R., Sidjimov, A.: Ionic liquid-suported liquid extraction of bioactive alkaloids. I. New HPLC method for qualitative determination of glaucin in Glaucine flavum Cr. (Papaveraceae). Sep. Purif. Technol. 97, 221–227 (2012)

    Article  CAS  Google Scholar 

  33. Tonova, I., Svinyarov, I., Bogdanov, M.G.: Hydrophobic 3-alkyl-1-methylimidazolium saccharinates as extractants for L-lactic acid recovery. Sep. Purif. Technol. 125, 239–246 (2014)

    Article  CAS  Google Scholar 

  34. Spieweck, F., Bettin, H.: Review: solid and liquid determination. Tech. Mess. 59, 285–292 (1992)

    Article  CAS  Google Scholar 

  35. Zábranský, M., Kolská, Z., Růžička, V., Domalski, E.S.: Heat capacity of liquids: critical review and recommended values. Supplement II. J. Phys. Chem. Ref. Data 29, 013103 (2010)

    Article  CAS  Google Scholar 

  36. Tariq, M., Forte, P.A.S., Gomes, M.F.C., Lopes, J.N.C., Rebelo, L.P.N.: Densities and refractive indices of imidazolium- and phosphonium- based ionic liquids: effect of temperature, alkyl chain lenght and anion. J. Chem. Thermodyn. 41, 790–798 (2009)

    Article  CAS  Google Scholar 

  37. Machanová, K., Boisset, A., Sedláková, Z., Anouti, M., Bendová, M., Jacquemin, J.: Thermophysical properties of ammonium based (trifluoromethyl)sulfonylimide ionic liquids: volumetric and transport properties. J. Chem. Eng. Data 57, 2227–2235 (2012)

    Article  CAS  Google Scholar 

  38. Rocha, M., Neves, C., Freire, M., Russina, O., Triolo, A., Coutinho, J., Santos, L.: Alkylimidazolium based ionic liquids: impact of cation symmetry on their nanoscale structural organization. J Phys. Chem. B 117, 10889–10897 (2013)

    Article  CAS  PubMed  Google Scholar 

  39. Zábranský, M., Růžička, V., Majer, V., Domalski, E.S.: Heat capacity of liquids: critical review and recommended values. J. Phys. Chem. Ref. Data 19(3), 719 (2016)

    Article  Google Scholar 

  40. Rocha, M., Bastos, M., Coutinho, J., Santos, L.: Heat capacities at 298.15 K of the extended [CnC1im][Ntf2] ionic liquid series. J. Chem. Therm. 53, 140–143 (2012)

    Article  CAS  Google Scholar 

  41. Anouti, M., Caillon-Caravanier, M., Le Floch, C., Lemordant, D.: Alkylammonium-based protic ionic liquids II. Ionic transport and heat-transfer properties: fragility and ionicity rule. J. Phys. Chem. B 112, 9412–9416 (2008)

    Article  CAS  PubMed  Google Scholar 

  42. Garcia-Miaja, G., Troncoso, J., Romani, L.: Excess enthalpy, density, and heat capacity for binary systems of alkylimidazolium-based ionic liquids + water. J. Chem. Thermodyn. 41, 161–166 (2009)

    Article  CAS  Google Scholar 

  43. Anouti, M., Caillon-Caravanier, M., Dridi, Y., Jacquemin, J., Hardacre, C., Lemordant, D.: Liquid densities, heat capacities, refractive index and excess quantities for protic ionic liquids + water binary system. J. Chem. Thermodyn. 41, 799–808 (2009)

    Article  CAS  Google Scholar 

  44. Ge, R., Hardacre, C., Jacquemin, J., Nancarrow, P., Rooney, D.W.: Heat capacities of ionic liquids as a function of temperature at 0.1 MPa. Measurement and prediction. J. Chem. Eng. Data 53, 2148–2153 (2008)

    Article  CAS  Google Scholar 

  45. Valderrama, J.O., Martinez, G., Rojas, R.E.: Predictive model for the heat capacity of ionic liquids using the mass connectivity index. Thermochim. Acta 513, 83–87 (2011)

    Article  CAS  Google Scholar 

  46. Gardas, R.L., Coutinho, J.A.P.: A group contribution method for heat capacity estimation of ionic liquids. Ind. Eng. Chem. Res. 47, 5751–5757 (2008)

    Article  CAS  Google Scholar 

  47. Ahmadi, A., Haghbakhsh, R., Raeissi, S., Hemmati, V.: A simple group contribution correlation for the prediction of ionic liquid heat capacities at different temperatures. Fluid Phase Equilib. 403, 95–103 (2015)

    Article  CAS  Google Scholar 

  48. Nancarrow, P., Lewis, M., Abou Chacra, L.: Group contribution methods for estimation of ionic liquid heat capacities: critical evaluation and extension. Chem. Eng. Technol. 38, 632–644 (2015)

    Article  CAS  Google Scholar 

  49. Preiss, U.P.R.M., Slattery, J.M., Krossing, I.: In silico prediction of molecular volumes, heat capacities, and temperature-dependent densities of ionic liquids. Ind. Eng. Chem. Res. 48, 2290–2296 (2009)

    Article  CAS  Google Scholar 

  50. COSMOtherm, Version C30, Release 17. COSMOlogic GmbH & Co. KG. http://www.cosmologic.de

  51. Eckert, F., Klamt, A.: Fast solvent screening via quantum chemistry: COSMO-RS approach. AIChE J. 48(2), 369–385 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Czech Science Foundation under Grant No. 17-08218S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Bendová.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bendová, M., Čanji, M., Wagner, Z. et al. Ionic Liquids as Thermal Energy Storage Materials: On the Importance of Reliable Data Analysis in Assessing Thermodynamic Data. J Solution Chem 48, 949–961 (2019). https://doi.org/10.1007/s10953-018-0798-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0798-9

Keywords

Navigation