Skip to main content
Log in

Extraction of Polyoxometallate Anions Containing Tungsten Towards Ionic Liquids

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Removal of tungstate \(\left( {{{\text{WO}}_{4}^{2-}}} \right)\) and metatungstate \(\left( {{{\text{W}}_{12} {\text{O}}_{39}^{6 - }} } \right)\) anions from aqueous solutions was studied by precipitation and liquid–liquid extraction using ionic liquids and without requiring any additional extraction agent. Hydrophilic ionic liquids were found to be very efficient at precipitating metatungstate anion and not to precipitate tungstate anion. Similarly, the large metatungstate anion was quantitatively removed from water at low pH towards a hydrophobic ionic liquid. Tungstate anions, in contrast, are not removed from water. The mechanism of extraction and influence of the charge density of anions on the extraction of W(VI) based anions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Wasserscheid, P., Welton, T.: Ionic Liquids in Synthesis, 2nd edn. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim (2009)

    Google Scholar 

  2. Kokorin, A. (ed.): Ionic Liquids: Applications and Perspectives. InTech, Rijeka (2011)

    Google Scholar 

  3. Viboud, S., Papaiconomou, N., Peyrard, C., Dubled, M., Mugnier, Y., Fontvieille, D.: Toxicological consequences of extracting KNbO3 and BaTiO3 nanoparticles from water using ionic liquids. RSC Adv. 3, 9223–9227 (2013)

    Article  CAS  Google Scholar 

  4. Plechkova, N.V., Seddon, K.R.: Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37, 123–150 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. Visser, A.E., Swatloski, R.P., Griffin, S.T., Hartman, D.H., Rogers, R.D.: Liquid/liquid extraction of metal ions in room temperature ionic liquids. Sep. Sci. Technol. 36, 785–804 (2001)

    Article  CAS  Google Scholar 

  6. Papaiconomou, N., Lee, J.-M., Salminen, J., von Stosch, M., Prausnitz, J.M.: Selective extraction of copper, mercury, silver, and palladium ions from water using hydrophobic ionic liquids. Ind. Eng. Chem. Res. 47, 5080–5086 (2008)

    Article  CAS  Google Scholar 

  7. Billard, I., Ouadi, A., Gaillard, C.: Liquid–liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: from discovery to understanding. Anal. Bioanal. Chem. 400, 1555–1566 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. Panja, S., Mohapatra, P.K., Tripathi, S.C., Gandhi, P.M., Janardan, P.: A highly efficient solvent system containing TODGA in room temperature ionic liquids for actinide extraction. Sep. Purif. Technol. 96, 289–295 (2012)

    Article  CAS  Google Scholar 

  9. Hawkins, C.A., Garvey, S.L., Dietz, M.L.: Structural variations in room-temperature ionic liquids: influence on metal ion partitioning modes and extraction selectivity. Sep. Purif. Technol. 89, 31–38 (2012)

    Article  CAS  Google Scholar 

  10. Visser, A.E., Swatloski, R.P., Reichert, W.M., Mayton, R., Sheff, S., Wierzbicki, A., Davis, J.H., Rogers, R.D.: Task-specific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+ and Cd2+: synthesis, characterization, and extraction studies. Environ. Sci. Technol. 36, 2523–2529 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. Ouadi, A., Gadenne, B., Hesemann, P., Moreau, J.J.E., Billard, I., Gaillard, C., Mekki, S., Moutiers, G.: Task-specific ionic liquids bearing 2-hydroxybenzylamine units: synthesis and americium-extraction studies. Chem. Eur. J. 12, 3074–3081 (2006)

    Article  CAS  PubMed  Google Scholar 

  12. Zuo, Y., Liu, Y., Chen, J., Li, D.Q.: The separation of cerium(IV) from nitric acid solutions containing thorium(IV) and lanthanides(III) using pure [C8 mim]PF6 as extracting phase. Ind. Eng. Chem. Res. 47, 2349–2355 (2008)

    Article  CAS  Google Scholar 

  13. Wellens, S., Thijs, B., Binnemans, K.: An environmentally friendlier approach to hydrometallurgy: highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids. Green Chem. 14, 1657–1665 (2012)

    Article  CAS  Google Scholar 

  14. Vander Hoogerstraete, T., Wellens, S., Verachtert, K., Binnemans, K.: Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recycling. Green Chem. 15, 919–927 (2013)

    Article  CAS  Google Scholar 

  15. Wellens, S., Goovaerts, R., Möller, C., Luyten, J., Thijs, B., Binnemans, K.: A continuous ionic liquid extraction process for the separation of cobalt from nickel. Green Chem. 15, 3160–3164 (2013)

    Article  CAS  Google Scholar 

  16. Papaiconomou, N., Vite, G., Goujon, N., Lévêque, J.-M., Billard, I.: Efficient removal of gold complexes from water by precipitation or liquid–liquid extraction using ionic liquids. Green Chem. 14, 2050–2056 (2012)

    Article  CAS  Google Scholar 

  17. Papaiconomou, N., Billard, I., Chainet, E.: Extraction of iridium(IV) from aqueous solutions using hydrophilic/hydrophobic ionic liquids. RSC Adv. 4, 48260–48266 (2014)

    Article  CAS  Google Scholar 

  18. Svecova, L., Papaiconomou, N., Billard, I.: Quantitative extraction of Rh(III) using ionic liquids and its simple separation from Pd(II). Dalton Trans. 45, 15162–15169 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. Katsuta, S., Watanabe, Y., Araki, Y., Kudo, Y.: Extraction of gold(III) from hydrochloric acid into various ionic liquids: relationship between extraction efficiency and aqueous solubility of ionic liquids. ACS Sustain. Chem. Eng. 4, 564–571 (2016)

    Article  CAS  Google Scholar 

  20. Génand-Pinaz, S., Papaiconomou, N., Leveque, J.-M.: Removal of platinum from water by precipitation or liquid–liquid extraction and separation from gold using ionic liquids. Green Chem. 15, 2493–2501 (2013)

    Article  CAS  Google Scholar 

  21. Papaiconomou, N., Génand-Pinaz, S., Leveque, J.-M., Guittonneau, S.: Selective extraction of gold and platinum in water using ionic liquids. A simple two-step extraction process. Dalton Trans. 42, 1979–1982 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. Papaiconomou, N., Cointeaux, L., Chainet, E., Iojoiu, C., Billard, I.: Uncertainty principle in the elucidation of the extraction mechanism of ions from aqueous towards ionic liquid phases as a textbook case. Chem Select 1, 3892–3900 (2016)

    CAS  Google Scholar 

  23. Papaiconomou, N., Svecova, L., Bonnaud, C., Cathelin, L., Billard, I., Chainet, E.: Possibilities and limitations in separating Pt(IV) from Pd(II) combining imidazolium and phosphonium ionic liquids. Dalton Trans. 44, 20131–20138 (2015)

    Article  CAS  PubMed  Google Scholar 

  24. Stepinski, D.C., Vandegrift, G.F., Shkrob, I.A., Wishart, J.F., Kerr, K., Dietz, M.L., Qadah, D.T.D., Garvey, S.L.: Extraction of tetra-oxo anions into a hydrophobic, ionic liquid-based solvent without concomitant ion exchange. Ind. Eng. Chem. Res. 49, 5863–5868 (2010)

    Article  CAS  Google Scholar 

  25. Fang, Z.Z., Wang, X., Ryu, T., Hwang, K.S., Sohn, H.Y.: Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide—A review. Int. Conf. Sci. Hard Mater. 27, 288–299 (2009)

    Article  CAS  Google Scholar 

  26. Schönauer, D., Sichert, I., Moos, R.: Vanadia doped tungsten–titania SCR catalysts as functional materials for exhaust gas sensor applications. Sens. Actuators B Chem. 155, 199–205 (2011)

    Article  CAS  Google Scholar 

  27. Shacham-Diamand, Y., Inberg, A., Sverdlov, Y., Croitoru, N.: Electroless silver and silver with tungsten thin films for microelectronics and microelectromechanical system applications. J. Electrochem. Soc. 147, 3345–3349 (2000)

    Article  CAS  Google Scholar 

  28. Visser, J.: Tungsten CMP applications. In: Li, Y. (ed.) Microelectronic Applications of Chemical Mechanical Planarization. Wiley, New York (2007)

    Google Scholar 

  29. Pourbaix, M.: Atlas of Electrochemical Equilibrium in Aqueous Solutions. NACE, Houston, TX (1974)

    Google Scholar 

  30. Smith, B.J., Patrick, V.A.: Quantitative determination of sodium metatungstate speciation by 183 W N.M.R. spectroscopy. Aust. J. Chem. 53, 965–970 (2001)

    Article  Google Scholar 

  31. Cruywagen, J.J.: Protonation, oligomerization, and condensation reactions of vanadate(V), molybdate(VI), and tungstate(VI). Adv. Inorg. Chem. 49, 127–182 (1999)

    Article  Google Scholar 

  32. Papaiconomou, N., Estager, J., Traore, Y., Bauduin, P., Bas, C., Legeai, S., Viboud, S., Draye, M.: Synthesis, physicochemical properties, and toxicity data of new hydrophobic ionic liquids containing dimethylpyridinium and trimethylpyridinium cations. J. Chem. Eng. Data 55, 1971–1979 (2010)

    Article  CAS  Google Scholar 

  33. Ogi, T., Makino, T., Nagai, S., Stark, W.J., Iskandar, F., Okuyama, K.: Facile and efficient removal of tungsten anions using lysine-promoted precipitation for recycling high-purity tungsten. ACS Sustain. Chem. Eng. 5, 3141–3147 (2017)

    Article  CAS  Google Scholar 

  34. Das, N.R., Lahiri, S.: Liquid-liquid extraction of 99Mo and 187W with trioctylamine. Fresenius J. Anal. Chem. 349, 481–482 (1994)

    Article  CAS  Google Scholar 

  35. Liu, J.Q., Xu, Z.-L., Zhou, K.-G.: Study on new method of the preparation of pure ammonium metatungstate (AMT) using a coupling process of neutralization–nanofiltration–crystallization. J. Membr. Sci. 240, 1–9 (2004)

    Article  CAS  Google Scholar 

  36. Agrawal, Y.K., Sharma, K.R.: Speciation, liquid–liquid extraction, sequential separation, preconcentration, transport and ICP-AES determination of Cr(III), Mo(VI) and W(VI) with calix-crown hydroxamic acid in high purity grade materials and environmental samples. Talanta 67, 112–120 (2005)

    Article  CAS  PubMed  Google Scholar 

  37. Coca, J., Díez, F.V., Morís, M.A.: Solvent extraction of molybdenum and tungsten by Alamine 336 and DEHPA. Hydrometallurgy 25, 125–135 (1990)

    Article  CAS  Google Scholar 

  38. Hur, H., Reeder, R.J.: Tungstate sorption mechanisms on boehmite: systematic uptake studies and X-ray absorption spectroscopy analysis. J. Colloid Interface Sci. 461, 249–260 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Papaiconomou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papaiconomou, N., Viboud, S. Extraction of Polyoxometallate Anions Containing Tungsten Towards Ionic Liquids. J Solution Chem 47, 1339–1350 (2018). https://doi.org/10.1007/s10953-018-0796-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0796-y

Keywords

Navigation