Skip to main content

Advertisement

Log in

Third-Order Kinetics for Interaction of Glutathione with a Dinuclear Pd(II) Complex and Their Mechanism, DNA Binding and DFT Study

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A kinetics and mechanistic study of the interaction between the bridged dimer \( [{\text{Pd}}({\text{pic}})({\text{OH}})]_{2}^{2 + } \) (where pic = 2-aminomethylpyridine) and glutathione (GSH) has been performed under pseudo-first order conditions using a stopped-flow spectrophotometer. The reaction follows a distinctive third-order kinetics via two consecutive steps. The first step follows the rate law kobs = k1[GSH]2, whereas step two is independent of the GSH concentration. The activation parameters, ΔH and ΔS for both steps, were determined and an associative mode of activation is suggested for the substitution process. Geometry optimizations and HOMO–LUMO energy calculations were done by DFT. The UV spectra of the complexes were compared with theoretically obtained TD-DFT spectra. Complex 2 and 3 interact non-covalently with calf-thymus DNA with binding constants (Kb and KSV) of the order of 104 L·mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Reedijk, J.: Why does cisplatin reach guanine-N7 with competing S-donor ligands available in the cell? Chem. Rev. 99, 2499–2510 (1999)

    Article  CAS  PubMed  Google Scholar 

  2. Lippert, B.: Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug. Wiley, Zürich/Weinheim (1999)

    Book  Google Scholar 

  3. Wong, E., Giandomenico, C.M.: Current status of platinum-based antitumor drugs. Chem. Rev. 99, 2451–2466 (1999)

    Article  CAS  PubMed  Google Scholar 

  4. Prasad, K.S., Kumar, L.S., Chandan, S., Naveen Kumar, R.M., Revanasiddappa, H.D.: Palladium(II) complexes as biologically potent metallo-drugs: synthesis, spectral characterization, DNA interaction studies and antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 107, 108–116 (2013)

    Article  CAS  PubMed  Google Scholar 

  5. Gao, E., Liu, C., Zhu, M., Lin, H., Wu, Q., Liu, L.: Current development of Pd(II) complexes as potential antitumor agents. Anticancer Agents Med. Chem. 3, 356–368 (2009)

    Article  Google Scholar 

  6. Rau, T., van Eldik, R.: Platinum and other metal coordination compounds in cancer chemotherapy. In: Sigel, H., Sigel, A. (eds.) Metal Ions In Biological Systems, pp. 339–368. Marcel Dekker, New York (1996)

    Google Scholar 

  7. Caires, A.C.F.: Recent advances involving palladium(II) complexes for the cancer therapy. Anti-Cancer Agents Med. Chem. 7, 484–491 (2007)

    Article  CAS  Google Scholar 

  8. Butour, J.L., Wimmer, S., Wimmer, F., Castan, P.: Palladium(II) compounds with potential antitumour properties and their platinum analogues: a comparative study of the reaction of some orotic acid derivatives with DNA in vitro. Chem. Biol. Interact. 104, 165–178 (1997)

    Article  CAS  PubMed  Google Scholar 

  9. Garoufis, A., Hadjikakou, S.K., Hadjiliadis, N.: Palladium coordination compounds as anti-viral, anti-fungal, anti-microbial and anti-tumor agents. Coord. Chem. Rev. 253, 1384–1397 (2009)

    Article  CAS  Google Scholar 

  10. Graham, R.D., Williams, R.D.: The synthesis and screening for anti-bacterial, -cancer, -fungicidal and -viral activities of some complexes of palladium and nickel. J. Inorg. Nucl. Chem. 41, 1245–1249 (1979)

    Article  CAS  Google Scholar 

  11. Rosenberg, B.: Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug. Verlag Helvetica Chimica Acta/Wiley-VCH, Zurich, Weinheim (1999)

    Google Scholar 

  12. Kelland, L.: The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 7, 573–584 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. Dasari, S., Tchounwou, B.P.: Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 740, 364–378 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. Rabik, C.A., Dolan, M.E.: Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat. Rev. 33, 9–23 (2007)

    Article  CAS  PubMed  Google Scholar 

  15. Kurzeev, S.A., Kazankor, G.M., Rybov, A.D.: Second- and inverse order pathways in the mechanism of orthopalladation of primary amines. Inorg. Chim. Acta 340, 192–196 (2002)

    Article  CAS  Google Scholar 

  16. Mitra, I., Ghosh, G.K., Mukherjee, S., Reddy, B.V.P., Linert, W., Kubel, F., Rocquefelte, X., Moi, S.C.: PdII–PdII bonding interaction in dinuclear PdII complex with non-macrocyclic (O&N) chelates: Characterization, kinetics and DFT study. Polyhedron 89, 101–109 (2015)

    Article  CAS  Google Scholar 

  17. Samanta, A., Ghosh, G.K., Mitra, I., Mukherjee, S., Bose, K.J.C., Mukhopadhyay, S., Linert, W., Moi, S.C.: Ligand substitution reaction on a platinum(II) complex with bio-relevant thiols: kinetics, mechanism and bioactivity in aqueous medium. RSC Adv. 4, 43516–43524 (2014)

    Article  CAS  Google Scholar 

  18. Samanta, A., Mitra, I., Reddy, B.V.P., Mukherjee, S., Mahata, S., Linert, W., Misini, B., Bhattacharjee, A., Dhabal, S., Ghosh, G.K., Moi, S.C.: Kinetics and mechanism of interaction of Pt(II) complex with bio-active ligands and in vitro Pt(II)–sulfur adduct formation in aqueous medium: bio-activity and computational study. J. Coord. Chem. 70(6), 1032–1052 (2017)

    Article  CAS  Google Scholar 

  19. El-Sherif, A.A., Shoukry, M.M., van Eldik, R.: Complex-formation reactions and stability constants for mixed-ligand complexes of diaqua(2-picolylamine)palladium(II) with some bio-relevant ligands. Dalton Trans. 7, 1425–1432 (2003)

    Article  CAS  Google Scholar 

  20. Misra, K., Ghosh, G.K., Mitra, I., Mukherjee, S., Reddy, B.V.P., Linert, W., Misini, B., Bose, K.J.C., Mukhopadhyay, S., Moi, S.C.: Interaction of bio-relevant thio-ether and thiols with dinuclear Pd(II) complex: kinetics, mechanism, bioactivity in aqueous medium and molecular docking. RSC Adv. 5, 12454–12462 (2015)

    Article  CAS  Google Scholar 

  21. Hay, R.W., Basak, A.K.: Hydrolysis of α-amino acid ester in mixed ligand complexes with 2,2′-bipyridyl palladium(II). J. Chem. Soc. Dalton Trans. 18191823 (1982)

  22. Ulatowski, F., Dąbrowa, K., Bałakier, T., Jurczak, J.: Recognizing the limited applicability of Job plots in studying host–guest interactions in supramolecular chemistry. J. Org. Chem. 81, 1746–1756 (2016)

    Article  CAS  PubMed  Google Scholar 

  23. Geary, W.J.: The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev. 7, 81–122 (1971)

    Article  CAS  Google Scholar 

  24. van Eldik, R., Asano, T., Noble, W.J.: Activation and reaction volumes in solution. 2. Chem. Rev. 89, 549–688 (1989)

    Article  Google Scholar 

  25. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.1. Gaussian Inc., Wallingford (2009)

    Google Scholar 

  26. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  27. Lee, C., Yang, W., Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  28. Hay, P.J., Wadt, W.R.: Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299–310 (1985)

    Article  CAS  Google Scholar 

  29. Hay, P.J., Wadt, W.R.: Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82, 284–298 (1985)

    Article  Google Scholar 

  30. Ditchfield, R., Hehre, W.J., Pople, J.A.: Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54, 724–728 (1971)

    Article  CAS  Google Scholar 

  31. Hehre, W., Ditchfield, J.R., Pople, J.A.: Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56, 2257–2261 (1972)

    Article  CAS  Google Scholar 

  32. Deacon, G.B., Huber, F., Phillips, R.J.: Diagnosis of the nature of carboxylate coordination from the direction of shifts of carbon oxygen stretching frequencies. Inorg. Chim. Acta 104, 41–45 (1985)

    Article  CAS  Google Scholar 

  33. Silverstein, R.M., Bassler, O.G., Morrill, T.C.: Spectrometric Identification of Organic Compounds. Wiley, New York (1974)

    Google Scholar 

  34. Tian, J.L., Gao, E.Q., Li, Y.T., Liu, S.X.: Synthesis and characterization of glyoxalic acid thiosemicarbazone complexes of some bivalent metal ions. Synth. React. Inorg. Met. Org. Chem. 25, 417–427 (1995)

    Article  CAS  Google Scholar 

  35. Liu, S., Tian, J., Gao, E., Bi, S., Li, Y.: Synthesis and characterization of transition metal ternary complexes of glyoxylic acid thiosemicarbazone and 1,10-phenanthroline. Synth. React. Inorg. Met. Org. Chem. 26, 1447–1454 (1996)

    Article  CAS  Google Scholar 

  36. Tian, L., Zhao, B., Zhou, Z., Yu, Q., Yu, W.: Synthesis and characterization of transition metal ternary complexes of glyoxylic acid thiosemicarbazone and 4,5-diazafluoren-9-one. Synth. React. Inorg. Met. Org. Chem. 32, 939–947 (2002)

    Article  CAS  Google Scholar 

  37. Chandrasekharan, M., Udupa, M.R., Aravamudan, G.: Cysteine complexes of palladium(II) and platinum(II). Inorg. Chim. Acta 7, 88–90 (1973)

    Article  CAS  Google Scholar 

  38. Illavarasi, R., Rao, M.N.S., Udupa, M.R.: Synthesis and characterization of palladium(II) complexes of purines and amino acids. Indian J. Chem. 38A, 161–165 (1998)

    Google Scholar 

  39. Watt, G., Klett, D.S.: The infrared spectra and structure of bis(ethylenediamine)palladium(II) and -platinum(II) halides. Inorg. Chem. 5, 1278–1280 (1966)

    Article  CAS  Google Scholar 

  40. Fujita, J., Martell, A.E., Nakamotom, K.: Infrared spectra of metal chelate compounds. VI. A normal coordinate treatment of oxalato metal complexes. J. Chem. Phys. 36, 324–332 (1962)

    Article  CAS  Google Scholar 

  41. Condrate, R.A., Nakamoto, K.: Infrared spectra and normal coordinate analysis of metal glycino complexes. J. Chem. Phys. 42, 2590–2598 (1965)

    Article  CAS  PubMed  Google Scholar 

  42. Iglesias, E., Prado-Gotor, R.: Interaction of gold nanoparticles mediated by captopril and S-nitrosocaptopril: the effect of manganese ions in mild acid medium. Phys. Chem. Chem. Phys. 17, 644–654 (2015)

    Article  CAS  PubMed  Google Scholar 

  43. Kurzeev, S.A., Kazankov, G.M., Ryabov, A.D.: Second- and inverse order pathways in the mechanism of orthopalladation of primary amines. Inorg. Chim. Acta 340, 192–196 (2002)

    Article  CAS  Google Scholar 

  44. Khattab, M.M., Soliman, A.A., Linert, W.: Kinetic study of the interaction of adenosine 5′-monophosphate with diaqua (2-hydrazinopyridine) palladium(II) in aqueous medium. Int. J. Chem. Kint. 42, 132–142 (2010)

    Article  CAS  Google Scholar 

  45. Ghosh, G.K., Moi, S.C., Linert, W.: Kinetics and mechanism of the interaction of dl-methionine with Di-μ-hydroxobis(1,10-phenanthroline)dipalladium(II) ion in aqueous solution. Synth. React. Inorg. Metal-Org. Nano-met. Chem. 40, 285–292 (2010)

    CAS  Google Scholar 

  46. Mallick, S., Mondal, S., Bera, B.K., Karmakar, P., Moi, S.C., Ghosh, A.K.: Kinetics and mechanism of the ligand substitution reaction of di-μ-hydroxobis(bipyridyl)dipalladium(II) ion with thiourea in aqueous solution. Transit. Met. Chem. 35, 469–475 (2010)

    Article  CAS  Google Scholar 

  47. Bugarčić, Z.D., Liehr, G., van Eldik, R.: Kinetics and mechanism of the reaction of chelated Pd(II) complexes with thiols in acidic aqueous solution. Synthesis and crystal structure of [Pd(bpma)Cl]ClH2O (bpma bis(2-pyridylmethyl)amine). J. Chem. Soc. Dalton Trans. 951–956 (2002)

  48. Ghosh, G.K., Misra, K., Baskim, M., Linert, W., Moi, S.C.: Kinetics and mechanism of the interaction of di-µ-hydroxobis(1,10-phenanthroline)dipalladium(II)perchlorate with thioglycolic acid and glutathione in aqueous solution. J. Solution Chem. 42, 526–543 (2013)

    Article  CAS  Google Scholar 

  49. Ghosh, G.K., Misra, K., Linert, W., Moi, S.C.: Interaction of glutathione with cis-(2-aminomethylpyridine)diaqua platinum(II) perchlorate in aqueous medium: their kinetics and mechanism. Synth. React. Inorg. Metal-Org. Nano-Metal Chem. 40, 285–292 (2013)

    Google Scholar 

  50. Wu, H., Zhang, Y., Chen, C., Zhang, J., Bai, Y., Shi, F., Wang, X.: DNA-binding studies and antioxidant activities of two-, three- and four-coordinate silver(I) complexes containing bis(2-benzimidazolyl)aniline derivatives. New J. Chem. 38, 3688–3698 (2014)

    Article  CAS  Google Scholar 

  51. Sisombath, N.S., Jalilehvand, F., Schell, A.C., Wu, Q.: Lead(II) binding to the chelating agent d-penicillamine in aqueous solution. Inorg. Chem. 53, 12459–12468 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wilson, W.D., Ratmeyer, L., Zhao, M., Strekowski, L., Boykin, D.: The search for structure-specific nucleic acid-interactive drugs: effects of compound structure on RNA versus DNA interaction strength. Biochemistry 32, 4098–4104 (1993)

    Article  CAS  PubMed  Google Scholar 

  53. van de Weert M.: Fluorescence quenching to study protein-ligand binding: common errors. J. Fluoresc. 20, 625–629 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to National Institute of Technology, Durgapur-713209, and to DST, Government of India for providing financial assistance (Project No. EEQ/2017/000077), and Vienna University of Technology, Vienna, Austria for providing the necessary laboratory assistance, particularly their stopped-flow spectrophotometer facility to follow the fast kinetics of the Pd(II) complex in this work. The authors I. Mitra and S. Mukherjee are thankful to DST-INSPIRE, Government of India for their research fellowship. Also, thanks are due to the reviewers for their valuable suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankar Ch. Moi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, A., Mitra, I., Mukherjee, S. et al. Third-Order Kinetics for Interaction of Glutathione with a Dinuclear Pd(II) Complex and Their Mechanism, DNA Binding and DFT Study. J Solution Chem 47, 1139–1156 (2018). https://doi.org/10.1007/s10953-018-0783-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0783-3

Keywords

Navigation