Skip to main content
Log in

Mechanism for Solvent Extraction of Lanthanides from Chloride Media by Basic Extractants

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The solvent extraction of lanthanides from chloride media to an organic phase containing an anion exchanger in the chloride form is known to show low extraction percentages and small separation factors. The coordination chemistry of the lanthanides in combination with this kind of extractant is poorly understood. Previous work has mainly used solvent extraction based techniques (slope analysis, fittings of the extraction curves) to derive the extraction mechanism of lanthanides from chloride media. In this paper, EXAFS spectra, luminescence lifetimes, excitation and emission spectra, and organic phase loadings of lanthanides in dry, water-saturated and diluted Aliquat 336 chloride or Cyphos IL 101 have been measured. The data show the formation of the hydrated lanthanide ion [Ln(H2O)8–9]3+ in undiluted and diluted Aliquat 336 and the complex [LnCl6]3− in dry Aliquat 336. The presence of the same species [Ln(H2O)8–9]3+ in the aqueous and in the organic phase explains the small separation factors and the poor selectivities for the separation of mixtures of lanthanides. Changes in separation factors with increasing chloride concentrations can be explained by changes in stability of the lanthanide chloro complexes in the aqueous phase, in combination with the extraction of the hydrated lanthanide ion to the organic phase. Finally, it is shown that the organic phase can be loaded with 107 g·L−1 of Nd(III) under the optimal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Marcus, Y., Kertes, A.S.: Ion Exchange and Solvent Extraction of Metal Complexes. Wiley, New York (1969)

    Google Scholar 

  2. Rydberg, J., Cox, M., Musikas, C., Choppin, G.R.: Solvent Extraction Principles and Practice. Revised and Expanded. CRC Press, New York (2004)

    Book  Google Scholar 

  3. Cotton, S.: Lanthanides and Actinides. Oxford University Press, Incorporated, Oxford (1991)

    Book  Google Scholar 

  4. Xie, F., Zhang, T.A., Dreisinger, D., Doyle, F.: A critical review on solvent extraction of rare earths from aqueous solutions. Miner. Eng. 56, 10–28 (2014). https://doi.org/10.1016/j.mineng.2013.10.021

    Article  CAS  Google Scholar 

  5. Krishnamurthy, N., Gupta, C.K.: Extractive Metallurgy of Rare Earths, 2nd edn. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  6. Vander Hoogerstraete, T., Onghena, B., Binnemans, K.: Homogeneous liquid–liquid extraction of metal ions with a functionalized ionic liquid. J. Phys. Chem. Lett. 4, 1659–1663 (2013). https://doi.org/10.1021/jz4005366

    Article  CAS  Google Scholar 

  7. Quinn, J.E., Soldenhoff, K.H., Stevens, G.W., Lengkeek, N.A.: Solvent extraction of rare earth elements using phosphonic/phosphinic acid mixtures. Hydrometallurgy 157, 298–305 (2015). https://doi.org/10.1016/j.hydromet.2015.09.005

    Article  CAS  Google Scholar 

  8. Zhang, F., Wang, A., Zhou, F., Dai, J., Wu, W.: Behavior of a synergistic system in the extraction of Pr(III) from chloride medium using di-2-ethylhexyl phosphoric acid and 2-ethylhexylphosphonic mono-2-ethylhexyl ester. Sep. Sci. Technol. 52, 1015–1021 (2017)

    Article  CAS  Google Scholar 

  9. Abreu, R.D., Morais, C.A.: Study on separation of heavy rare earth elements by solvent extraction with organophosphorus acids and amine reagents. Miner. Eng. 61, 82–87 (2014). https://doi.org/10.1016/j.mineng.2014.03.015

    Article  CAS  Google Scholar 

  10. Tyumentsev, M.S., Foreman, M.R.S.J., Ekberg, C., Matyskin, A.V., Retegan, T., Steenari, B.-M.: The solvent extraction of rare earth elements from nitrate media with novel polyamides containing malonamide groups. Hydrometallurgy 164, 24–30 (2016). https://doi.org/10.1016/j.hydromet.2016.05.007

    Article  CAS  Google Scholar 

  11. Aly, M.I., Masry, B.A., Gasser, M.S., Khalifa, N.A., Daoud, J.A.: Extraction of Ce(IV), Yb(III) and Y(III) and recovery of some rare earth elements from Egyptian monazite using CYANEX 923 in kerosene. Int. J. Miner. Process. 153, 71–79 (2016). https://doi.org/10.1016/j.minpro.2016.06.001

    Article  CAS  Google Scholar 

  12. Lu, D., Horng, J.S., Hoh, Y.C.: The separation of neodymium by quaternary amine from didymium nitrate solution. J. Common Met. 149, 219–224 (1989). https://doi.org/10.1016/0022-5088(89)90489-X

    Article  Google Scholar 

  13. Bose, R.S.C., Kumaresan, R., Venkatesan, K.A., Gardas, R.L., Antony, M.P., Vasudeva Rao, P.R.: Insights into the extraction of Am(III) by Aliquat-336 based ionic liquids. Sep. Sci. Technol. 49, 2338–2345 (2014)

    Article  CAS  Google Scholar 

  14. Černá, M., Volaufová, E., Rod, V.: Extraction of light rare earth elements by amines at high inorganic nitrate concentration. Hydrometallurgy 28, 339–352 (1992). https://doi.org/10.1016/0304-386X(92)90039-3

    Article  Google Scholar 

  15. Marcus, Y., Abrahamer, I.: Anion exchange of metal complexes—VII. The lanthanides-nitrate system. J. Inorg. Nucl. Chem. 22, 141–150 (1961). https://doi.org/10.1016/0022-1902(61)80237-6

    Article  CAS  Google Scholar 

  16. Vander Hoogerstraete, T., Binnemans, K.: Highly efficient separation of rare earths from nickel and cobalt by solvent extraction with the ionic liquid trihexyl(tetradecyl)phosphonium nitrate: a process relevant to the recycling of rare earths from permanent magnets and nickel metal hydride batteries. Green Chem. 16, 1594–1606 (2014). https://doi.org/10.1039/C3GC41577E

    Article  CAS  Google Scholar 

  17. Baybarz, R.D., Kinser, H.B.: Separation of Transplutoniums and Lanthanides by Tertiary Amine Extraction: Contaminant Ions. U.S. Atomic Energy Commission, Oak Ridge National Laboratory Chemical Technology Division Chemical Development Section A, Oak Ridge (1962)

    Book  Google Scholar 

  18. Sohsah, M., Krejzler, J., Siekierski, S.: An extraction study of lanthanide chloro complexes the adogen-464Cl–LiCl system. Solvent Extr. Ion Exch. 8, 875–892 (1990). https://doi.org/10.1080/07366299008918036

    Article  CAS  Google Scholar 

  19. Mikhailichenko, A.I., Goryacheva, E.G., Sokolova, N.P., Aksenova, N.M., Vdovina, L.V., Emelyanov, A.P.: Extraction of rare-earth elements from chloride solutions by salts of quaternary ammonium bases. Sov. Radiochem. 26, 25–29 (1984)

    Google Scholar 

  20. Khopkar, P.K., Mathur, J.N.: Extraction of trivalent actinides and lanthanides by tertiary and quaternary amines from concentrated chloride solutions. J. Inorg. Nucl. Chem. 43, 1035–1040 (1981). https://doi.org/10.1016/0022-1902(81)80170-4

    Article  CAS  Google Scholar 

  21. Peppard, D.F., Mason, G.W., Hucher, I.: Stability constants of certain lanthanide(III) and actinide(III) chloride and nitrate complexes. J. Inorg. Nucl. Chem. 24, 881–888 (1962). https://doi.org/10.1016/0022-1902(62)80109-2

    Article  Google Scholar 

  22. Doidge, E.D., Carson, I., Love, J.B., Morrison, C.A., Tasker, P.A.: The influence of the Hofmeister bias and the stability and speciation of chloridolanthanates on their extraction from chloride media. Solvent Extr. Ion Exch. 34, 579–593 (2016). https://doi.org/10.1080/07366299.2016.1245051

    Article  CAS  Google Scholar 

  23. Goto, T., Smutz, M.: Stability constants of lighter lanthanide(III) chloride complexes by a potentiometric method. J. Inorg. Nucl. Chem. 27, 663–671 (1965). https://doi.org/10.1016/0022-1902(65)80271-8

    Article  CAS  Google Scholar 

  24. Regadío, M., Riaño, S., Binnemans, K., Vander Hoogerstraete, T.: Direct analysis of metal ions in solutions with high salt concentrations by total reflection X-ray fluorescence. Anal. Chem. 89, 4595–4603 (2017). https://doi.org/10.1021/acs.analchem.7b00097

    Article  CAS  PubMed  Google Scholar 

  25. Riaño, S., Regadío, M., Binnemans, K., Vander Hoogerstraete, T.: Practical guidelines for best practice on total reflection X-ray fluorescence spectroscopy: analysis of aqueous solutions. Spectrochim. Acta B 124, 109–115 (2016). https://doi.org/10.1016/j.sab.2016.09.001

    Article  CAS  Google Scholar 

  26. Klementev, K.V.: Extraction of the fine structure from x-ray absorption spectra. J. Phys. Appl. Phys. 34, 209–217 (2001). https://doi.org/10.1088/0022-3727/34/2/309

    Article  CAS  Google Scholar 

  27. Newville, M.: IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8, 322–324 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. Wellens, S., Thijs, B., Binnemans, K.: An environmentally friendlier approach to hydrometallurgy: highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids. Green Chem. 14, 1657–1665 (2012). https://doi.org/10.1039/C2GC35246J

    Article  CAS  Google Scholar 

  29. Deferm, C., de Voorde, M.V., Luyten, J., Oosterhof, H., Fransaer, J., Binnemans, K.: Purification of indium by solvent extraction with undiluted ionic liquids. Green Chem. 18, 4116–4127 (2016). https://doi.org/10.1039/C6GC00586A

    Article  CAS  Google Scholar 

  30. Fraser, K.J., MacFarlane, D.R.: Phosphonium-based ionic liquids: an overview. Aust. J. Chem. 62, 309–321 (2009). https://doi.org/10.1071/CH08558

    Article  CAS  Google Scholar 

  31. Stojanovic, A., Morgenbesser, C., Kogelnig, D., Krachler, R., Keppler, B.K.: Quaternary ammonium and phosphonium ionic liquids in chemical and environmental engineering. In: Ionic Liquids: Theory, Properties New Approaches, pp. 657–680. Intech, Rijeka (2011). https://doi.org/10.5772/14340

  32. Allen, P.G., Bucher, J.J., Shuh, D.K., Edelstein, N.M., Craig, I.: Coordination chemistry of trivalent lanthanide and actinide ions in dilute and concentrated chloride solutions. Inorg. Chem. 39, 595–601 (2000). https://doi.org/10.1021/ic9905953

    Article  CAS  PubMed  Google Scholar 

  33. Dupont, D., Depuydt, D., Binnemans, K.: Overview of the effect of salts on biphasic ionic liquid/water solvent extraction systems: anion exchange, mutual solubility, and thermomorphic properties. J. Phys. Chem. B. 119, 6747–6757 (2015). https://doi.org/10.1021/acs.jpcb.5b02980

    Article  CAS  PubMed  Google Scholar 

  34. Hofmeister, F.: Zur lehre von der wirkung der salze. Arch. Für Exp. Pathol. Pharmakol. 25, 1–30 (1888). https://doi.org/10.1007/BF01838161

    Article  Google Scholar 

  35. Silverstein, R.M., Webster, F.X., Kiemle, D.J., Bryce, D.L.: Spectrometric Identification of Organic Compounds. Wiley, Hoboken (2014)

    Google Scholar 

  36. Ryan, J.L., Jørgensen, C.K.: Absorption spectra of octahedral lanthanide hexahalides. J. Phys. Chem. 70, 2845–2857 (1966). https://doi.org/10.1021/j100881a021

    Article  CAS  Google Scholar 

  37. Alvarez-Vicente, J., Dandil, S., Banerjee, D., Gunaratne, H.Q.N., Gray, S., Felton, S., Srinivasan, G., Kaczmarek, A.M., Van Deun, R., Nockemann, P.: Easily accessible rare-earth-containing phosphonium room-temperature ionic liquids: EXAFS, luminescence, and magnetic properties. J. Phys. Chem. B. 120, 5301–5311 (2016). https://doi.org/10.1021/acs.jpcb.6b03870

    Article  CAS  PubMed  Google Scholar 

  38. Santos, E., Albo, J., Daniel, C.I., Portugal, C.A.M., Crespo, J.G., Irabien, A.: Permeability modulation of supported magnetic ionic liquid membranes (SMILMs) by an external magnetic field. J. Membr. Sci. 430, 56–61 (2013). https://doi.org/10.1016/j.memsci.2012.12.009

    Article  CAS  Google Scholar 

  39. Binnemans, K.: Interpretation of europium(III) spectra. Coord. Chem. Rev. 295, 1–45 (2015). https://doi.org/10.1016/j.ccr.2015.02.015

    Article  CAS  Google Scholar 

  40. Horrocks, W.D., Sudnick, D.R.: Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules. J. Am. Chem. Soc. 101, 334–340 (1979). https://doi.org/10.1021/ja00496a010

    Article  CAS  Google Scholar 

  41. Carlos, L.D., Ferreira, R.A.S., de Zea Bermudez, V., Ribeiro, S.J.L.: Lanthanide-containing light-emitting organic-inorganic hybrids: a bet on the future. Adv. Mater. 21, 509–534 (2009). https://doi.org/10.1002/adma.200801635

    Article  CAS  PubMed  Google Scholar 

  42. Persson, I., D’Angelo, P., De Panfilis, S., Sandström, M., Eriksson, L.: Hydration of lanthanoid(III) ions in aqueous solution and crystalline hydrates studied by EXAFS spectroscopy and crystallography: the myth of the “gadolinium break”. Chem. Eur. J. 14, 3056–3066 (2008). https://doi.org/10.1002/chem.200701281

    Article  CAS  PubMed  Google Scholar 

  43. Beuchat, C., Hagberg, D., Spezia, R., Gagliardi, L.: Hydration of lanthanide chloride salts: a quantum chemical and classical molecular dynamics simulation study. J. Phys. Chem. B 114, 15590–15597 (2010). https://doi.org/10.1021/jp105590h

    Article  CAS  PubMed  Google Scholar 

  44. David, F., Vokhmin, V., Ionova, G.: Water characteristics depend on the ionic environment. Thermodynamics and modelisation of the aquo ions. J. Mol. Liq. 90, 45–62 (2001). https://doi.org/10.1016/S0167-7322(01)00106-4

    Article  CAS  Google Scholar 

  45. Preston, J.S.: Solvent extraction of metals by carboxylic acids. Hydrometallurgy 14, 171–188 (1985). https://doi.org/10.1016/0304-386X(85)90032-5

    Article  CAS  Google Scholar 

  46. Binnemans, K., Jones, P.T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A., Buchert, M.: Recycling of rare earths: a critical review. J. Clean. Prod. 51, 1–22 (2013). https://doi.org/10.1016/j.jclepro.2012.12.037

    Article  CAS  Google Scholar 

  47. Vander Hoogerstraete, T., Wellens, S., Verachtert, K., Binnemans, K.: Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recycling. Green Chem. 15, 919–927 (2013). https://doi.org/10.1039/C3GC40198G

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the KU Leuven (Projects GOA/13/008 and IOF-KP RARE3), the FWO Flanders (postdoctoral fellowship to TVDH), VLAIO Flanders (Ph.D. fellowship to BO) and the Brazilian Science without Border program from CNPq (postdoctoral fellowship to ERS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Vander Hoogerstraete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vander Hoogerstraete, T., Souza, E.R., Onghena, B. et al. Mechanism for Solvent Extraction of Lanthanides from Chloride Media by Basic Extractants. J Solution Chem 47, 1351–1372 (2018). https://doi.org/10.1007/s10953-018-0782-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0782-4

Keywords

Navigation