Abstract
The solvent extraction of lanthanides from chloride media to an organic phase containing an anion exchanger in the chloride form is known to show low extraction percentages and small separation factors. The coordination chemistry of the lanthanides in combination with this kind of extractant is poorly understood. Previous work has mainly used solvent extraction based techniques (slope analysis, fittings of the extraction curves) to derive the extraction mechanism of lanthanides from chloride media. In this paper, EXAFS spectra, luminescence lifetimes, excitation and emission spectra, and organic phase loadings of lanthanides in dry, water-saturated and diluted Aliquat 336 chloride or Cyphos IL 101 have been measured. The data show the formation of the hydrated lanthanide ion [Ln(H2O)8–9]3+ in undiluted and diluted Aliquat 336 and the complex [LnCl6]3− in dry Aliquat 336. The presence of the same species [Ln(H2O)8–9]3+ in the aqueous and in the organic phase explains the small separation factors and the poor selectivities for the separation of mixtures of lanthanides. Changes in separation factors with increasing chloride concentrations can be explained by changes in stability of the lanthanide chloro complexes in the aqueous phase, in combination with the extraction of the hydrated lanthanide ion to the organic phase. Finally, it is shown that the organic phase can be loaded with 107 g·L−1 of Nd(III) under the optimal conditions.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Marcus, Y., Kertes, A.S.: Ion Exchange and Solvent Extraction of Metal Complexes. Wiley, New York (1969)
Rydberg, J., Cox, M., Musikas, C., Choppin, G.R.: Solvent Extraction Principles and Practice. Revised and Expanded. CRC Press, New York (2004)
Cotton, S.: Lanthanides and Actinides. Oxford University Press, Incorporated, Oxford (1991)
Xie, F., Zhang, T.A., Dreisinger, D., Doyle, F.: A critical review on solvent extraction of rare earths from aqueous solutions. Miner. Eng. 56, 10–28 (2014). https://doi.org/10.1016/j.mineng.2013.10.021
Krishnamurthy, N., Gupta, C.K.: Extractive Metallurgy of Rare Earths, 2nd edn. CRC Press, Boca Raton (2015)
Vander Hoogerstraete, T., Onghena, B., Binnemans, K.: Homogeneous liquid–liquid extraction of metal ions with a functionalized ionic liquid. J. Phys. Chem. Lett. 4, 1659–1663 (2013). https://doi.org/10.1021/jz4005366
Quinn, J.E., Soldenhoff, K.H., Stevens, G.W., Lengkeek, N.A.: Solvent extraction of rare earth elements using phosphonic/phosphinic acid mixtures. Hydrometallurgy 157, 298–305 (2015). https://doi.org/10.1016/j.hydromet.2015.09.005
Zhang, F., Wang, A., Zhou, F., Dai, J., Wu, W.: Behavior of a synergistic system in the extraction of Pr(III) from chloride medium using di-2-ethylhexyl phosphoric acid and 2-ethylhexylphosphonic mono-2-ethylhexyl ester. Sep. Sci. Technol. 52, 1015–1021 (2017)
Abreu, R.D., Morais, C.A.: Study on separation of heavy rare earth elements by solvent extraction with organophosphorus acids and amine reagents. Miner. Eng. 61, 82–87 (2014). https://doi.org/10.1016/j.mineng.2014.03.015
Tyumentsev, M.S., Foreman, M.R.S.J., Ekberg, C., Matyskin, A.V., Retegan, T., Steenari, B.-M.: The solvent extraction of rare earth elements from nitrate media with novel polyamides containing malonamide groups. Hydrometallurgy 164, 24–30 (2016). https://doi.org/10.1016/j.hydromet.2016.05.007
Aly, M.I., Masry, B.A., Gasser, M.S., Khalifa, N.A., Daoud, J.A.: Extraction of Ce(IV), Yb(III) and Y(III) and recovery of some rare earth elements from Egyptian monazite using CYANEX 923 in kerosene. Int. J. Miner. Process. 153, 71–79 (2016). https://doi.org/10.1016/j.minpro.2016.06.001
Lu, D., Horng, J.S., Hoh, Y.C.: The separation of neodymium by quaternary amine from didymium nitrate solution. J. Common Met. 149, 219–224 (1989). https://doi.org/10.1016/0022-5088(89)90489-X
Bose, R.S.C., Kumaresan, R., Venkatesan, K.A., Gardas, R.L., Antony, M.P., Vasudeva Rao, P.R.: Insights into the extraction of Am(III) by Aliquat-336 based ionic liquids. Sep. Sci. Technol. 49, 2338–2345 (2014)
Černá, M., Volaufová, E., Rod, V.: Extraction of light rare earth elements by amines at high inorganic nitrate concentration. Hydrometallurgy 28, 339–352 (1992). https://doi.org/10.1016/0304-386X(92)90039-3
Marcus, Y., Abrahamer, I.: Anion exchange of metal complexes—VII. The lanthanides-nitrate system. J. Inorg. Nucl. Chem. 22, 141–150 (1961). https://doi.org/10.1016/0022-1902(61)80237-6
Vander Hoogerstraete, T., Binnemans, K.: Highly efficient separation of rare earths from nickel and cobalt by solvent extraction with the ionic liquid trihexyl(tetradecyl)phosphonium nitrate: a process relevant to the recycling of rare earths from permanent magnets and nickel metal hydride batteries. Green Chem. 16, 1594–1606 (2014). https://doi.org/10.1039/C3GC41577E
Baybarz, R.D., Kinser, H.B.: Separation of Transplutoniums and Lanthanides by Tertiary Amine Extraction: Contaminant Ions. U.S. Atomic Energy Commission, Oak Ridge National Laboratory Chemical Technology Division Chemical Development Section A, Oak Ridge (1962)
Sohsah, M., Krejzler, J., Siekierski, S.: An extraction study of lanthanide chloro complexes the adogen-464Cl–LiCl system. Solvent Extr. Ion Exch. 8, 875–892 (1990). https://doi.org/10.1080/07366299008918036
Mikhailichenko, A.I., Goryacheva, E.G., Sokolova, N.P., Aksenova, N.M., Vdovina, L.V., Emelyanov, A.P.: Extraction of rare-earth elements from chloride solutions by salts of quaternary ammonium bases. Sov. Radiochem. 26, 25–29 (1984)
Khopkar, P.K., Mathur, J.N.: Extraction of trivalent actinides and lanthanides by tertiary and quaternary amines from concentrated chloride solutions. J. Inorg. Nucl. Chem. 43, 1035–1040 (1981). https://doi.org/10.1016/0022-1902(81)80170-4
Peppard, D.F., Mason, G.W., Hucher, I.: Stability constants of certain lanthanide(III) and actinide(III) chloride and nitrate complexes. J. Inorg. Nucl. Chem. 24, 881–888 (1962). https://doi.org/10.1016/0022-1902(62)80109-2
Doidge, E.D., Carson, I., Love, J.B., Morrison, C.A., Tasker, P.A.: The influence of the Hofmeister bias and the stability and speciation of chloridolanthanates on their extraction from chloride media. Solvent Extr. Ion Exch. 34, 579–593 (2016). https://doi.org/10.1080/07366299.2016.1245051
Goto, T., Smutz, M.: Stability constants of lighter lanthanide(III) chloride complexes by a potentiometric method. J. Inorg. Nucl. Chem. 27, 663–671 (1965). https://doi.org/10.1016/0022-1902(65)80271-8
Regadío, M., Riaño, S., Binnemans, K., Vander Hoogerstraete, T.: Direct analysis of metal ions in solutions with high salt concentrations by total reflection X-ray fluorescence. Anal. Chem. 89, 4595–4603 (2017). https://doi.org/10.1021/acs.analchem.7b00097
Riaño, S., Regadío, M., Binnemans, K., Vander Hoogerstraete, T.: Practical guidelines for best practice on total reflection X-ray fluorescence spectroscopy: analysis of aqueous solutions. Spectrochim. Acta B 124, 109–115 (2016). https://doi.org/10.1016/j.sab.2016.09.001
Klementev, K.V.: Extraction of the fine structure from x-ray absorption spectra. J. Phys. Appl. Phys. 34, 209–217 (2001). https://doi.org/10.1088/0022-3727/34/2/309
Newville, M.: IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8, 322–324 (2001)
Wellens, S., Thijs, B., Binnemans, K.: An environmentally friendlier approach to hydrometallurgy: highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids. Green Chem. 14, 1657–1665 (2012). https://doi.org/10.1039/C2GC35246J
Deferm, C., de Voorde, M.V., Luyten, J., Oosterhof, H., Fransaer, J., Binnemans, K.: Purification of indium by solvent extraction with undiluted ionic liquids. Green Chem. 18, 4116–4127 (2016). https://doi.org/10.1039/C6GC00586A
Fraser, K.J., MacFarlane, D.R.: Phosphonium-based ionic liquids: an overview. Aust. J. Chem. 62, 309–321 (2009). https://doi.org/10.1071/CH08558
Stojanovic, A., Morgenbesser, C., Kogelnig, D., Krachler, R., Keppler, B.K.: Quaternary ammonium and phosphonium ionic liquids in chemical and environmental engineering. In: Ionic Liquids: Theory, Properties New Approaches, pp. 657–680. Intech, Rijeka (2011). https://doi.org/10.5772/14340
Allen, P.G., Bucher, J.J., Shuh, D.K., Edelstein, N.M., Craig, I.: Coordination chemistry of trivalent lanthanide and actinide ions in dilute and concentrated chloride solutions. Inorg. Chem. 39, 595–601 (2000). https://doi.org/10.1021/ic9905953
Dupont, D., Depuydt, D., Binnemans, K.: Overview of the effect of salts on biphasic ionic liquid/water solvent extraction systems: anion exchange, mutual solubility, and thermomorphic properties. J. Phys. Chem. B. 119, 6747–6757 (2015). https://doi.org/10.1021/acs.jpcb.5b02980
Hofmeister, F.: Zur lehre von der wirkung der salze. Arch. Für Exp. Pathol. Pharmakol. 25, 1–30 (1888). https://doi.org/10.1007/BF01838161
Silverstein, R.M., Webster, F.X., Kiemle, D.J., Bryce, D.L.: Spectrometric Identification of Organic Compounds. Wiley, Hoboken (2014)
Ryan, J.L., Jørgensen, C.K.: Absorption spectra of octahedral lanthanide hexahalides. J. Phys. Chem. 70, 2845–2857 (1966). https://doi.org/10.1021/j100881a021
Alvarez-Vicente, J., Dandil, S., Banerjee, D., Gunaratne, H.Q.N., Gray, S., Felton, S., Srinivasan, G., Kaczmarek, A.M., Van Deun, R., Nockemann, P.: Easily accessible rare-earth-containing phosphonium room-temperature ionic liquids: EXAFS, luminescence, and magnetic properties. J. Phys. Chem. B. 120, 5301–5311 (2016). https://doi.org/10.1021/acs.jpcb.6b03870
Santos, E., Albo, J., Daniel, C.I., Portugal, C.A.M., Crespo, J.G., Irabien, A.: Permeability modulation of supported magnetic ionic liquid membranes (SMILMs) by an external magnetic field. J. Membr. Sci. 430, 56–61 (2013). https://doi.org/10.1016/j.memsci.2012.12.009
Binnemans, K.: Interpretation of europium(III) spectra. Coord. Chem. Rev. 295, 1–45 (2015). https://doi.org/10.1016/j.ccr.2015.02.015
Horrocks, W.D., Sudnick, D.R.: Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules. J. Am. Chem. Soc. 101, 334–340 (1979). https://doi.org/10.1021/ja00496a010
Carlos, L.D., Ferreira, R.A.S., de Zea Bermudez, V., Ribeiro, S.J.L.: Lanthanide-containing light-emitting organic-inorganic hybrids: a bet on the future. Adv. Mater. 21, 509–534 (2009). https://doi.org/10.1002/adma.200801635
Persson, I., D’Angelo, P., De Panfilis, S., Sandström, M., Eriksson, L.: Hydration of lanthanoid(III) ions in aqueous solution and crystalline hydrates studied by EXAFS spectroscopy and crystallography: the myth of the “gadolinium break”. Chem. Eur. J. 14, 3056–3066 (2008). https://doi.org/10.1002/chem.200701281
Beuchat, C., Hagberg, D., Spezia, R., Gagliardi, L.: Hydration of lanthanide chloride salts: a quantum chemical and classical molecular dynamics simulation study. J. Phys. Chem. B 114, 15590–15597 (2010). https://doi.org/10.1021/jp105590h
David, F., Vokhmin, V., Ionova, G.: Water characteristics depend on the ionic environment. Thermodynamics and modelisation of the aquo ions. J. Mol. Liq. 90, 45–62 (2001). https://doi.org/10.1016/S0167-7322(01)00106-4
Preston, J.S.: Solvent extraction of metals by carboxylic acids. Hydrometallurgy 14, 171–188 (1985). https://doi.org/10.1016/0304-386X(85)90032-5
Binnemans, K., Jones, P.T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A., Buchert, M.: Recycling of rare earths: a critical review. J. Clean. Prod. 51, 1–22 (2013). https://doi.org/10.1016/j.jclepro.2012.12.037
Vander Hoogerstraete, T., Wellens, S., Verachtert, K., Binnemans, K.: Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recycling. Green Chem. 15, 919–927 (2013). https://doi.org/10.1039/C3GC40198G
Acknowledgements
The authors thank the KU Leuven (Projects GOA/13/008 and IOF-KP RARE3), the FWO Flanders (postdoctoral fellowship to TVDH), VLAIO Flanders (Ph.D. fellowship to BO) and the Brazilian Science without Border program from CNPq (postdoctoral fellowship to ERS).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Vander Hoogerstraete, T., Souza, E.R., Onghena, B. et al. Mechanism for Solvent Extraction of Lanthanides from Chloride Media by Basic Extractants. J Solution Chem 47, 1351–1372 (2018). https://doi.org/10.1007/s10953-018-0782-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-018-0782-4