Skip to main content
Log in

Interactions Between Surface Active Ionic Liquid and Procaine Hydrochloride Drug in Aqueous Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Complex formation between the anesthetic drug, procaine hydrochloride and a surface active ionic liquid (SAIL), 1-tetradecyl-3-methylimidazolium chloride, [C14mim][Cl], in aqueous medium has been investigated using surface tension, fluorescence and DLS measurements at 298.15 K and conductance at 288.15, 298.15 and 308.15 K. Critical aggregation concentration (CAC), degree of ionization (α), and various thermodynamic parameters were determined using the conductivity measurements. The interfacial behavior of SAIL at different concentrations of the drug was evaluated from surface tension measurements by calculating a series of surface parameters and CAC values. Fluorescence spectroscopy was used to evaluate the binding constant (K) and the standard state Gibbs energy change (ΔG°) for the formation of drug–SAIL complexes, which confirms the existence of cation–π interactions between the drug molecules and imidazolium ring of the SAIL molecules. The CAC values were found to decrease with increase in the concentration of the drug, which is due to the balancing between hydrophobic and electrostatic interactions. Dynamic light scattering provides sufficient information about the size of the aggregates and the variation in the hydrodynamic diameters pertaining to the changes in the drug concentration. The results from above methods show that the aggregation process of SAIL is favored by increases in the concentration of the drug. It is demonstrated that with the better understanding of the interactions, [C14mim][Cl] can be judiciously utilized in making use of procaine hydrochloride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Welton, T.: Room-temperature ionic liquids. solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)

    Article  CAS  PubMed  Google Scholar 

  2. Earle, M.J., Esperanca, J.M.S.S., Gilea, M.A., Canongia Lopes, J.N., Rebelo, L.P.N., Magee, J.W., Seddon, K.R., Widegren, J.A.: The distillation and volatility of ionic liquids. Nature 439, 831–834 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. Łuczak, J., Jungnickel, C., Łącka, I., Stolte, S., Hupka, J.: Antimicrobial and surface activity of 1-alkyl-3-methylimidazolium derivatives. Green Chem. 12, 593–601 (2010)

    Article  CAS  Google Scholar 

  4. Harjani, J.R., Farrell, J., Garcia, M.T., Singer, R.D., Scammells, P.J.: Further investigation of the biodegradability of imidazolium ionic liquids. Green Chem. 11, 821–829 (2009)

    Article  CAS  Google Scholar 

  5. Firestone, M.A., Dzielawa, J.A., Zapol, P., Curtiss, L.A., Seifert, S., Dietz, M.L.: Lyotropic liquid-crystalline gel formation in a room-temperature ionic liquid. Langmuir 18, 7258–7260 (2002)

    Article  CAS  Google Scholar 

  6. Umebayashi, Y., Kurisaki, T., Tanaka, D., Inoue, Y., Wakita, H., Minofar, B., Fukuda, S., Ishiguro, S.: Surface analysis of ionic liquids with and without lithium salt using X–ray photoelectron spectroscopy. J. Phys. Chem. B 116, 10870–10875 (2012)

    PubMed  Google Scholar 

  7. Picálek, J., Minofar, B., Kolafa, J., Jungwirth, P.: Aqueous solutions of ionic liquids: study of the solution/vapor interface using molecular dynamics simulations. Phys. Chem. Chem. Phys. 10, 5765–5775 (2008)

    Article  CAS  PubMed  Google Scholar 

  8. Umebayashi, Y., Song, X., Hamano, H., Minofar, B., Kanzaki, R., Fujii, K., Kameda, Y., Kohara, S., Watanabe, M., Ishiguro, S.: Structural heterogeneity and unique distorted hydrogen bonding in primary ammonium nitrate ionic liquids studied by high-energy X-ray diffraction experiments and MD simulations. J. Phys. Chem. B 116, 2801–2813 (2012)

    Article  CAS  PubMed  Google Scholar 

  9. Wang, H., Wang, J., Zhang, S., Xuan, X.: Structural effects of anions and cations on the aggregation behavior of ionic liquids in aqueous solutions. J. Phys. Chem. B 112, 16682–16689 (2008)

    Article  CAS  PubMed  Google Scholar 

  10. Rao, K.S., Singh, T., Trivedi, T.J., Kumar, A.: aggregation behavior of amino acid ionic liquid surfactants in aqueous media. J. Phys. Chem. B 115, 13847–13853 (2011)

    Article  CAS  PubMed  Google Scholar 

  11. Łuczak, J., Hupka, J., Thöming, J., Jungnickel, C.: Self-organization of imidazolium ionic liquids in aqueous solution. Colloids Surf. A 329, 125–133 (2008)

    Article  CAS  Google Scholar 

  12. Lawrence, M.J.: Surfactant systems: their use in drug delivery. Chem. Soc. Rev. 23, 417–424 (1994)

    Article  CAS  Google Scholar 

  13. Torchilin, V.P.: Structure and design of polymeric surfactant-based drug delivery systems. J. Controlled Release 73, 137–172 (2001)

    Article  CAS  Google Scholar 

  14. Mahajan, S., Mahajan, R.K.: Interactions of phenothiazine drugs with bile salts: micellization and binding studies. J. Colloid Interface Sci. 387, 194–204 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. Mahajan, R.K., Mahajan, S., Bhadani, A., Singh, S.: Physicochemical studies of pyridinium gemini surfactants with promethazine hydrochloride in aqueous solution. Phys. Chem. Chem. Phys. 14, 887–898 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. Sharma, R., Mahajan, R.K.: An investigation of binding ability of ionic surfactants with trifluoperazine dihydrochloride: insights from surface tension, electronic absorption and fluorescence measurements. RSC Adv. 2, 9571–9583 (2012)

    Article  CAS  Google Scholar 

  17. Jones, M.C., Leroux, J.C.: Polymeric micelles–a new generation of colloidal drug carriers. Eur. J. Pharm. Biopharm. 48, 101–111 (1999)

    Article  CAS  PubMed  Google Scholar 

  18. Sharma, R., Kamal, A., Kang, T.S., Mahajan, R.K.: Interactional behavior of the polyelectrolyte poly sodium 4-styrene sulphonate (NaPSS) with imidazolium based surface active ionic liquids in an aqueous medium. Phys. Chem. Chem. Phys. 17, 23582–23594 (2015)

    Article  CAS  PubMed  Google Scholar 

  19. Mahajan, S., Sharma, R., Mahajan, R.K.: An investigation of drug binding ability of a surface active ionic liquid: micellization, electrochemical, and spectroscopic studies. Langmuir 28, 17238–17246 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. Sanan, R., Kaur, R., Mahajan, R.K.: Micellar transitions in catanionic ionic liquid–ibuprofen aqueous mixtures; effects of composition and dilution. RSC Adv. 4, 64877–64889 (2014)

    Article  CAS  Google Scholar 

  21. Mahajan, R.K., Singla, P., Singh, O., Chabba, S.: Pluronic-SAILs (surface active ionic liquids) mixed micelles as efficient hydrophobic quercetin drug carriers. J. Mol. Liq. 249, 294–303 (2018)

    Article  CAS  Google Scholar 

  22. Pal, A., Yadav, A.: Binding interactions of anesthetic drug with surface active ionic liquid. J. Mol. Liq. 222, 471–479 (2016)

    Article  CAS  Google Scholar 

  23. Bowman, W.C., Rand, M.J.: Textbook of Pharmacology. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  24. Avendaño, C.: Introducción a la Química Farmacéutica. McGraw-Hill-Interamericana, Madrid (1993)

    Google Scholar 

  25. Alcolea, M.: Raman spectrum of procaine hydrochloride. Spectrosc. Lett. 30, 975–998 (1997)

    Article  Google Scholar 

  26. Dong, B., Li, N., Zheng, L., Yu, L., Inoue, T.: Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution. Langmuir 23, 4178–4182 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. Vargaftik, N.B., Volkov, B.N., Voljak, L.D.: International tables of the surface tension of water. J. Phys. Chem. Ref. Data 12, 817–820 (1983)

    Article  CAS  Google Scholar 

  28. Rosen, M.J.: Surfactants and Interfacial Phenomenon, 3rd edn. Wiley, New York (2004)

    Book  Google Scholar 

  29. Luczak, J., Jungnickel, C., Joskowska, M., Thoming, J., Hupka, J.: Thermodynamics of micellization of imidazolium ionic liquids in aqueous solutions. J. Colloid Interface Sci. 336, 111–116 (2009)

    Article  CAS  PubMed  Google Scholar 

  30. Phillips, J.N.: The energetics of micelle formation. Trans. Faraday Soc. 51, 561–569 (1955)

    Article  CAS  Google Scholar 

  31. Bowers, J., Butts, C.P., Martin, P.J., Vergara-Gutierrez, M.C.: Aggregation behavior of aqueous solutions of ionic liquids. Langmuir 20, 2191–2198 (2004)

    Article  CAS  PubMed  Google Scholar 

  32. Rosen, M.J.: Surfactants and Interfacial Phenomenon, 2nd edn. Wiley, New York (2004)

    Book  Google Scholar 

  33. Nusselder, J.J.H., Engberts, J.B.F.N.: Toward a better understanding of the driving force for micelle formation and micellar growth. J. Colloid Interface Sci. 148, 353–361 (1992)

    Article  CAS  Google Scholar 

  34. Mahiuddin, S., Minofar, B., Borah, J.M., Das, M.R., Jungwirth, P.: Propensities of oxalic, citric, succinic, and maleic acids for the aqueous solution/vapour interface: surface tension measurements and molecular dynamics simulations. Chem. Phys. Lett. 462, 217–221 (2008)

    Article  CAS  Google Scholar 

  35. Jaycock, M.J., Parfitt, G.D.: Chemistry of Interfaces. Wiley, New York (1981)

    Google Scholar 

  36. Israelachvili, J.N., Mitchell, D.J., Ninham, B.W.: Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. 2, 1525–1568 (1976)

    Article  Google Scholar 

  37. Tanford, C.: The Hydrophobic Effect: Formation of Micelles and Biological Membranes. Wiley, New York (1980)

    Google Scholar 

  38. Myers, D.: Surfactant Science and Technology, 3rd edn. Wiley, Hoboken (2006)

    Google Scholar 

  39. Israelachvili, J.N.: Intermolecular and Surface Forces, 2nd edn. Harcourt Brace and Co., New York (1998)

    Google Scholar 

  40. Mukherjee, P.: The nature of the association equilibria and hydrophobic bonding in aqueous solutions of association colloids. Adv. Colloid Interface Sci. 1, 242–275 (1967)

    Article  Google Scholar 

  41. Sulthana, S.B., Rao, P.V.C., Bhat, S.G.T., Rakshit, A.K.: Interfacial and thermodynamic properties of SDBS-C12E10 mixed micelles in aqueous media: effect of additives. J. Phys. Chem. B 102, 9653–9660 (1998)

    Article  CAS  Google Scholar 

  42. Sugihara, G., Oida, T., Nakashima, N., Nagadone, S., Ko, J.-S., Oh, S.-W.: Adsorption and micelle formation of mixed surfactant systems in water. III. A comparison between cationic gemini/cationic and cationic gemini/nonionic combinations. J. Oleo. Sci. 52, 509–522 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors Alka Yadav gratefully acknowledges the financial support for the work by Government of India through University Grants Commission, New Delhi (Letter No. F. 41-328/2012 (SR)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amalendu Pal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, A., Yadav, A. Interactions Between Surface Active Ionic Liquid and Procaine Hydrochloride Drug in Aqueous Solution. J Solution Chem 47, 1096–1111 (2018). https://doi.org/10.1007/s10953-018-0778-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0778-0

Keywords

Navigation