A Short Review of the Separation of Iridium and Rhodium from Hydrochloric Acid Solutions by Solvent Extraction

Article
  • 2 Downloads

Abstract

Iridium and rhodium are among the platinum group metals. The properties, production processes, and aqueous chemistry of both metals are reviewed. The separation of Ir(IV) and Rh(III) from hydrochloric acid solution is dependent on the characteristics of the solvent extraction systems. In most of the extraction conditions, Ir(IV) is selectively extracted over Rh(III) by either amines or neutral extractants. Rh(I) can be selectively extracted over Ir(III) by neutral extractants after Rh(III) is reduced in the presence of a reducing agent. The separation of these two metals using cationic extractants has also been reported. Although selective extraction of one metal over the other is possible, more efficient solvent extraction systems need to be developed.

Keywords

Separation Solvent extraction Iridium Rhodium Aqueous chemistry 

Notes

Acknowledgements

This work was supported by the Global Excellent Technology Innovation of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), and granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20165010100810). We also thank Murdoch University for collaboration opportunities.

References

  1. 1.
    Sun, P.P., Lee, M.S.: Separation of Ir(IV) and Rh(III) from mixed chloride solutions by solvent extraction. Hydrometallurgy 105(3–4), 334–340 (2011)Google Scholar
  2. 2.
    Liu, W., Huang, Z., Dong, J.: Solvent extraction of iridium(IV) with the petroleum sulfoxide. Asian J. Chem. 25(13), 7131–7134 (2013)Google Scholar
  3. 3.
    Taher, M.A., Puri, S., Bansal, R.K., Puri, B.K.: Derivative spectrophotometric determination of iridium after preconcentration of its 1-(2-pyridylazo)-2-naphthol complex on microcrystalline naphthalene. Talanta 45(2), 411–416 (1997)Google Scholar
  4. 4.
    Tang, B., Han, F., Zhang, G.Y.: Kinetic-spectrofluorimetric determination of trace amounts of iridium. Talanta 56(4), 603–611 (2002)Google Scholar
  5. 5.
    Locatelli, C.: Catalytic-adsorptive stripping voltammetric determination of ultra-trace iridium(III). Application to fresh- and sea-water. Talanta 85(1), 546–550 (2011)Google Scholar
  6. 6.
    Drušković, V., Vojković, V., Miko, S.: Spectrofluorimetric determination of iridium(IV) traces using 4-pyridone derivatives. Talanta 62(3), 489–495 (2004)Google Scholar
  7. 7.
    Hartley, F.R.: Chemistry of the Platinum Group Metals: Recent Developments, vol. 11, 1st edn. Elsevier, Amsterdam (1991)Google Scholar
  8. 8.
    Livingstone, S.E.: The chemistry of ruthenium, rhodium, palladium, osmium, iridium and platinum. In: Bailar, J., Trotman-Dickenson, A.F. (eds.) Comprehensive Inorganic Chemistry, vol. 25, pp. 1163–1370. Pergamon, Oxford (1973)Google Scholar
  9. 9.
    Armstrong, J.C., Choppin, G.R.: Radiochemistry of Rhodium. Subcommittee on Radiochemistry, National Academy of Sciences-National Research Council; available from the Clearinghouse for Federal Scientific and Technical Information, Springfield (1965)Google Scholar
  10. 10.
    Emsley, J.: Nature’s Building Blocks: An AZ Guide to the Elements. Oxford University Press, New York (2001)Google Scholar
  11. 11.
    Ojeda, C.B., Rojas, F.S.: Determination of rhodium: since the origins until today. Talanta 67(1), 1–19 (2005)Google Scholar
  12. 12.
    Buchanan, D.L.: Platinum-Group Element Exploration, vol. 26. Elsevier, Amsterdam (1988)Google Scholar
  13. 13.
    Criddle, A.J., Stanley, C.J.: Quantitative Data File for Ore Minerals, 3rd edn. Springer, London (1993)Google Scholar
  14. 14.
    Rao, C.R.M., Reddi, G.S.: Platinum group metals (PGM); occurrence, use and recent trends in their determination. TrAC, Trends Anal. Chem. 19(9), 565–586 (2000)Google Scholar
  15. 15.
    Al-Bazi, S.J., Chow, A.: Platinum metals—solution chemistry and separation methods (ion-exchange and solvent extraction). Talanta 31(10), 815–836 (1984)Google Scholar
  16. 16.
    Beamish, F.E.: A critical review of methods of isolating and separating the noble metals—II. Ion-exchange and solvent extraction. Talanta 14(9), 991–1009 (1967)Google Scholar
  17. 17.
    Bernardis, F.L., Grant, R.A., Sherrington, D.C.: A review of methods of separation of the platinum-group metals through their chloro-complexes. React. Funct. Polym. 65(3), 205–217 (2005)Google Scholar
  18. 18.
    Hagelüken, C.: Recycling of spent noble metal catalysts with emphasis on pyrometallurgical processing. Oil Gas Eur. Mag. 25(3), 36–39 (1999)Google Scholar
  19. 19.
    Cleare, M.J., Charlesworth, P., Bryson, D.J.: Solvent extraction in platinum group metal processing. J. Chem. Technol. Biotechnol. 29(4), 210–224 (1979)Google Scholar
  20. 20.
    Benguerel, E., Demopoulos, G.P., Harris, G.B.: Speciation and separation of rhodium(III) from chloride solutions: a critical review. Hydrometallurgy 40(1), 135–152 (1996)Google Scholar
  21. 21.
    Ammen, C.W.: Recovery and Refining of Precious Metals, 2nd edn. Springer, Boston (1997)Google Scholar
  22. 22.
    Gilchrist, R., Wichers, E.: A procedure for the separation of the six platinum metals from one another and for their gravimetric determination. J. Am. Chem. Soc. 57(12), 2565–2573 (1935)Google Scholar
  23. 23.
    Schreier, G., Edtmaier, C.: Separation of Ir, Pd and Rh from secondary Pt scrap by precipitation and calcination. Hydrometallurgy 68(1–3), 69–75 (2003)Google Scholar
  24. 24.
    Diamantatos, A.: A new solvent extraction scheme for the separation of platinum, palladium, rhodium and iridium. Anal. Chim. Acta 67(2), 317–323 (1973)Google Scholar
  25. 25.
    Mhaske, A.A., Dhadke, P.M.: Extraction separation studies of Rh, Pt and Pd using Cyanex 921 in toluene—a possible application to recovery from spent catalysts. Hydrometallurgy 61(2), 143–150 (2001)Google Scholar
  26. 26.
    Mhaske, A., Dhadke, P.: Extraction separation studies of Os, Ru and Ir using Cyanex 921 in toluene. Hydrometallurgy 63(2), 207–214 (2002)Google Scholar
  27. 27.
    Afzaletdinova, N.G., Khisamutdinov, R.A., Bondareva, S.O., Murinov, Y.I.: Extraction of rhodium(III) from hydrochloric acid solutions with bis-acylated triethylenetetramine dihydrochloride. Russ. J. Gen. Chem. 85(8), 1934–1938 (2015)Google Scholar
  28. 28.
    Afzaletdinova, N.G., Murinov, Y.I.: Extraction of rhodium(III) with sulfoxides from hydrochloric acid solutions. Russ. J. Inorg. Chem. 56(7), 1143–1152 (2011)Google Scholar
  29. 29.
    Preston, J.S., du Preez, A.C.: Solvent extraction of platinum-group metals from hydrochloric acid solutions by dialkyl sulphoxides. Solvent Extract. Ion Exch. 20(3), 359–374 (2002)Google Scholar
  30. 30.
    Chavan, D.V., Dhadke, P.M.: Extraction separation of Ir(III) and Rh(III) with Cyanex 923 from chloride media: a possible recovery from spent autocatalysts. J. Chem. Technol. Biotechnol. 77(8), 925–932 (2002)Google Scholar
  31. 31.
    Kokate, S.J., Kuchekar, S.R.: Reversed phase extraction chromatographic separation of ruthenium(III). J. Saudi Chem. Soc. 14(1), 41–45 (2010)Google Scholar
  32. 32.
    Stella, R., Di Casa, M.: Radioanalytical investigation on rhodium extraction behaviour with tri-N-butylphosphate from iodide solutions. J. Radioanal. Chem. 16(1), 183–190 (1973)Google Scholar
  33. 33.
    Bowen, H.J.M., Leach, A.J.: Partial separation of rhodium and iridium using polyurethane foam. J. Radioanal. Nucl. Chem. 128(2), 103–107 (1988)Google Scholar
  34. 34.
    Kanert, G.A., Chow, A.: The separation of rhodium and iridium by anion-exchange. Anal. Chim. Acta 78(2), 375–382 (1975)Google Scholar
  35. 35.
    Berg, E.W., Senn, W.L.: Ion exchange separation of rhodium and iridium. Anal. Chem. 27(8), 1255–1256 (1955)Google Scholar
  36. 36.
    Cluett, M.L., Berman, S.S., McBryde, W.A.E.: Separation of rhodium and iridium by ion exchange. Analyst 80(948), 204–209 (1955)Google Scholar
  37. 37.
    du Preez, J.G.H., Viviers, C., Louw, T., Hosten, E., Jonck, H.: The separation of rhodium and iridium. II. Chloridation and chlorination of iridium(III) and (IV). Solvent Extract. Ion Exch. 22(2), 175–188 (2004)Google Scholar
  38. 38.
    Berman, S., McBryde, W.: The separation of rhodium and iridium by ion exchange. Can. J. Chem. 36(5), 845–852 (1958)Google Scholar
  39. 39.
    Majavu, A., Ogunlaja, A.S., Tshentu, Z.R.: Separation of rhodium(III) and iridium(IV) chlorido complexes using polymer microspheres functionalized with quaternary diammonium groups. Sep. Sci. Technol. 52(1), 71–80 (2017)Google Scholar
  40. 40.
    Guha, P.K., Guha, R.: Principle of extraction of solute by solvent. J. Chem. Educ. 69(1), 73 (1992)Google Scholar
  41. 41.
    Shamsuddin, M.: Physical Chemistry of Metallurgical Processes. Wiley, Hoboken (2016)Google Scholar
  42. 42.
    Nguyen, T.H., Lee, M.S.: A review on the separation of molybdenum, tungsten, and vanadium from leach liquors of diverse resources by solvent extraction. Geosystem Eng. 19(5), 247–259 (2016)Google Scholar
  43. 43.
    Cotton, F.A., Wilkinson, G.: Advanced Inorganic Chemistry: A Comprehensive Text, 4th edn. Wiley, New York (1980)Google Scholar
  44. 44.
    Loon, G.V., Page, J.A.: The chemistry of iridium in basic aqueous solution: a polarographic study. Can. J. Chem. 44(4), 515–520 (1966)Google Scholar
  45. 45.
    Sleight, T.P., Hare, C.R.: The photochemistry of hexachloroiridate(IV). Inorg. Nucl. Chem. Lett. 4(3), 165–167 (1968)Google Scholar
  46. 46.
    Poulsen, I.A., Garner, C.S.: A Thermodynamic and kinetic study of hexachloro and aquopentachloro complexes of iridium(III) in aqueous solutions. J. Am. Chem. Soc. 84(11), 2032–2037 (1962)Google Scholar
  47. 47.
    Kedari, C.S., Coll, M.T., Fortuny, A., Goralska, E., Sastre, A.M.: Recovery and partitioning of Ir(IV) and Ru(III) from chloride solutions by solvent extraction using Cyanex 923/kerosene. Hydrometallurgy 82(1–2), 40–47 (2006)Google Scholar
  48. 48.
    Zhang, L., Li, N., Fan, P., Chu, X., An, S., Zhang, J., Wang, X.: Rapid and selective separation of iridium ions from aqueous solutions using nano-Al2O3. Hydrometallurgy 127, 8–15 (2012)Google Scholar
  49. 49.
    Sánchez, J.M., Salvadó, V., Havel, J.: Speciation of iridium(IV) in hydrochloric acid medium by means of capillary zone electrophoresis and spectrophotometry. J. Chromatogr. A 834(1–2), 329–340 (1999)Google Scholar
  50. 50.
    Fine, D.A.: Studies of the iridium(III) and (IV)–chloride system in acid solution. J. Inorg. Nucl. Chem. 32(8), 2731–2742 (1970)Google Scholar
  51. 51.
    Cozzi, D., Pantani, F.: The polarographic behaviour of rhodium(III) chlorocomplexes. J. Inorg. Nucl. Chem. 8, 385–398 (1958)Google Scholar
  52. 52.
    Lee, M., Lee, J., Sun, P.: Solvent extraction of rhodium(III) and iridium(IV) from hydrochloric acid solution. Korean J. Met. Mater. 48(5), 430–435 (2010)Google Scholar
  53. 53.
    Dreher, T.M., Demopoulos, G.P.: The conversion of Rh(m) chlorocomplexes to bromocomplexes and their solvent extraction behaviour. Solvent Extract. Ion Exch. 17(5), 1231–1253 (1999)Google Scholar
  54. 54.
    Mahmoud, M., Barakat, M., Mahrous, Y., El-Shahat, M.: Extraction of rhodium from platinum solutions in presence of aluminum chloride with tri-octylphosphine oxide in toluene. Adv. Appl. Sci. Res. 5(4), 100–106 (2014)Google Scholar
  55. 55.
    Ashrafizadeh, S.N., Demopoulos, G.P.: Formation of w/o microemulsions in the extraction dystem Rh(III)–HCl–Kelex 100 and its impact on Rh(III) distribution. J. Colloid Interface Sci. 173(2), 448–459 (1995)Google Scholar
  56. 56.
    Malik, P., Paula Paiva, A.: Solvent extraction of rhodium from chloride media by N,N′-dimethyl-N,N′-diphenyltetradecylmalonamide. Solvent Extract. Ion Exch. 26(1), 25–40 (2008)Google Scholar
  57. 57.
    Palmer, D.A., Harris, G.M.: Kinetics, mechanism, and stereochemistry of the aquation and chloride anation reactions of fac- and mer-trichlorotriaquorhodium(III) complexes in acidic aqueous solution. Complete reaction scheme for complex ions of the general formula [RhCln(OH2)6–n]3−n. Inorg. Chem. 14(6), 1316–1321 (1975)Google Scholar
  58. 58.
    Geswindt, T.E.: Chemical speciation of RhIII complexes in acidic, halide-rich media by means of 103Rh NMR spectroscopy: the importance of speciation in the selective separation and recovery of rhodium. PhD thesis. Stellenbosch University (2013)Google Scholar
  59. 59.
    Nguyen, T.H., Sonu, C.H., Lee, M.S.: Separation of Ir(IV) and Rh(III) from strong hydrochloric acid solutions by solvent extraction with amines. J. Ind. Eng. Chem. 36, 245–250 (2016)Google Scholar
  60. 60.
    Kanert, G.A., Chow, A.: Solvent extraction separation of rhodium from iridium with tri-n-octylamine as a liquid anion-exchanger. Anal. Chim. Acta 69(2), 355–361 (1974)Google Scholar
  61. 61.
    Kedari, S., Coll, M.T., Fortuny, A., Goralska, E., Sastre, A.M.: Liquid–liquid extraction of Ir, Ru, and Rh from chloride solutions and their separation using different commercially available solvent extraction reagents. Sep. Sci. Technol. 40(9), 1927–1946 (2005)Google Scholar
  62. 62.
    Goralska, E., Coll, M.T., Fortuny, A., Kedari, C.S., Sastre, A.M.: Studies on the selective separation of Ir(IV), Ru(III) and Rh(III) from chloride solutions using Alamine 336 in kerosene. Solvent Extract. Ion Exch. 25(1), 65–77 (2007)Google Scholar
  63. 63.
    Al-Bazi, S.J., Chow, A.: Extraction of rhodium and iridium with polyurethane foam. Anal. Chem. 53(7), 1073–1076 (1981)Google Scholar
  64. 64.
    Nguyen, T.H., Lee, M.S.: Effect of HCl concentration on the oxidation of LIX 63 and the subsequent separation of Pd(II), Pt(IV), Ir(IV) and Rh(III) by solvent extraction. Korean J. Met. Mater. 54(10), 768–774 (2016)Google Scholar
  65. 65.
    Busev, A.I., Akimov, V.K.: Some antipyrine derivatives in the analytical chemistry of the platinum metals. Talanta 11(12), 1675 (1964)Google Scholar
  66. 66.
    Mojski, M.: Extraction of platinum metals from hydrochloric acid medium with triphenylphosphine solution in 1,2-dichloroethane. Talanta 27(1), 7–10 (1980)Google Scholar
  67. 67.
    Diamantatos, A.: The solvent extraction of platinum-group metals and gold with 2-mercaptobenzo-thiazole. Anal. Chim. Acta 66(1), 147–151 (1973)Google Scholar
  68. 68.
    Diamantatos, A., Verbeek, A.A.: Method for the separation of platinum, palladium, rhodium, iridium and gold by solvent extraction. Anal. Chim. Acta 91(2), 287–294 (1977)Google Scholar
  69. 69.
    Faye, G.H., Inman, W.R.: A scheme for the separation of platinum, palladium, rhodium, and iridium by solvent extraction. Anal. Chem. 35(8), 985–988 (1963)Google Scholar
  70. 70.
    Tertipis, G.G., Beamish, F.E.: Solvent extraction separation and spectrophotometric determination of rhodium and iridium. Anal. Chem. 34(6), 623–625 (1962)Google Scholar
  71. 71.
    Kostanski, M.T., Freiser, H.: Extraction of rhodium and iridium with 4-(non-5-yl) pyridine. Anal. Chim. Acta 242, 191–201 (1991)Google Scholar
  72. 72.
    Kedari, C.S., Coll, T., Fortuny, A., Sastre, A.: Third phase formation in the solvent extraction system Ir(IV)–Cyanex 923. Solvent Extract. Ion Exch. 23(4), 545–559 (2005)Google Scholar
  73. 73.
    Narita, H., Morisaku, K., Tanaka, M.: Synergistic extraction of rhodium(III) from hydrochloric acid solution with tri-n-octylamine and sulfide-type extractants. Solvent Extract. Ion Exch. 33(5), 462–471 (2015)Google Scholar
  74. 74.
    Narita, H., Morisaku, K., Tanaka, M.: Highly efficient extraction of rhodium(III) from hydrochloric acid solution with amide-containing tertiary amine compounds. Solvent Extract. Ion Exch. 33(4), 407–417 (2015)Google Scholar
  75. 75.
    Binnemans, K., Jones, P.T.: Solvometallurgy: an emerging branch of extractive metallurgy. J. Sustain. Metall. 3(3), 570–600 (2017)Google Scholar
  76. 76.
    Svecova, L., Papaiconomou, N., Billard, I.: Quantitative extraction of Rh(III) using ionic liquids and its simple separation from Pd(II). Dalton Trans. 45(38), 15162–15169 (2016)Google Scholar
  77. 77.
    Rzelewska, M., Baczyńska, M., Regel-Rosocka, M., Wiśniewski, M.: Trihexyl(tetradecyl)phosphonium bromide as extractant for Rh(III), Ru(III) and Pt(IV) from chloride solutions. Chem. Pap. 70(4), 454–460 (2016)Google Scholar
  78. 78.
    Papaiconomou, N., Billard, I., Chainet, E.: Extraction of iridium(IV) from aqueous solutions using hydrophilic/hydrophobic ionic liquids. RSC Adv. 4(89), 48260–48266 (2014)Google Scholar
  79. 79.
    Ashrafizadeh, S.N., Demopoulos, G.P.: Extraction and separation of HCl and Rh(III) with trioctylamine. J. Chem. Technnol. Biotechnol. 67(4), 367–375 (1996)Google Scholar
  80. 80.
    Ryan, D.E.: Colorimetric microdetermination of rhodium with 2-mercaptobenzoxazole. Anal. Chem. 22(4), 599–600 (1950)Google Scholar
  81. 81.
    Zou, L., Chen, J., Huang, Y.: An alternative way to separating Ir(IV) and Rh(III) ions from a mixed chloride solution with added stannous chloride. Hydrometallurgy 72(1–2), 31–37 (2004)Google Scholar
  82. 82.
    Berg, E.W., Senn, W.L.: Separation of rhodium and iridium by multiple fractional extraction. Anal. Chim. Acta 19, 109–113 (1958)Google Scholar
  83. 83.
    Wilson, R.B., Jacobs, W.D.: Separation of iridium from rhodium by extraction with tributyl phosphate. Anal. Chem. 33(12), 1650–1652 (1961)Google Scholar
  84. 84.
    Davies, A.G., Wilkinson, G., Young, J.F.: Tin(II) chloride complexes of platinum metals. J. Am. Chem. Soc. 85(11), 1692–1692 (1963)Google Scholar
  85. 85.
    Young, J.F., Gillard, R.D., Wilkinson, G.: 992. Complexes of ruthenium, rhodium, iridium, and platinum with tin(II) chloride. J. Chem. Soc. 5176–5189 (1964)Google Scholar
  86. 86.
    Afzaletdinova, N.G., Murinov, Y.I.: Iridium(IV) extraction with petroleum sulfoxides from hydrochloric acid solutions. Russ. J. Inorg. Chem. 55(8), 1312–1315 (2010)Google Scholar
  87. 87.
    Tertipis, G.G., Beamish, F.E.: The recovery of rhodium, iridium, palladium and platinum from ores and concentrates by wet assay and a comparison with recovery by fire assays. Talanta 10(11), 1139–1151 (1963)Google Scholar
  88. 88.
    Zou, L., Chen, J., Pan, X.: Solvent extraction of rhodium from aqueous solution of Rh(III)–Sn(II)–Cl-system by TBP. Hydrometallurgy 50(3), 193–203 (1998)Google Scholar
  89. 89.
    Palmer, D.A., Kelm, H.: The influence of pressure on the rates of acid hydrolysis of tris(oxalato) complexes of trivalent cobalt, chromium and rhodium. J. Inorg. Nucl. Chem. 40(6), 1095–1098 (1978)Google Scholar
  90. 90.
    Benguerel, E., Demopoulos, G., Cote, G., Bauer, D., Lautié, A.: Characterization of extracted complexes in liquid–liquid extraction of rhodium with Kelex 100 in the presence of SnCl2. J. Chem. Technol. Biotechnol. 62(4), 380–384 (1995)Google Scholar
  91. 91.
    du Preez, J.G.H., McClelland, C.W., Viviers, C., Louw, T., Jonck, H.: The separation of rhodium and iridium. III. Secondary reactions relating to chlorination. Solvent Extract. Ion Exch. 22(2), 189–201 (2004)Google Scholar
  92. 92.
    Al-Bazi, S.J., Chow, A.: Polyurethane foam for the extraction of rhodium and its separation from iridium. Talanta 31(6), 431–435 (1984)Google Scholar
  93. 93.
    Hamon, R.F., Khan, A.S., Chow, A.: The cation-chelation mechanism of metal-ion sorption by polyurethanes. Talanta 29(4), 313–326 (1982)Google Scholar
  94. 94.
    Yan, G.L., Alstad, J.: Solvent extraction of rhodium, ruthenium, and iridium with HDEHP. J. Radioanal. Nucl. Chem. 201(3), 191–198 (1995)Google Scholar
  95. 95.
    Nguyen, T.H., Sonu, C.H., Lee, M.S.: Separation of Pt(IV), Pd(II), Rh(III) and Ir(IV) from concentrated hydrochloric acid solutions by solvent extraction. Hydrometallurgy 164, 71–77 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Advanced Materials Science & Engineering, Institute of Rare MetalMokpo National UniversityMokpoKorea
  2. 2.Chemical & Metallurgical Engineering & Chemistry, School of Engineering and Information TechnologyMurdoch UniversityMurdoch, PerthAustralia

Personalised recommendations