Skip to main content
Log in

Supramolecular Interaction of Primaquine with Native β-Cyclodextrin

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The supramolecular host–guest inclusion complex of Primaquine (PQ) with the nano-hydrophobic cavity of beta-cyclodextrin (β-CD) was prepared by physical mixing, kneading and co-precipitation methods. The formation of an inclusion complex in PQ with β-CD in the solution phase has been confirmed by UV–visible and fluorescence spectroscopy. The stoichiometry of the inclusion complex is 1:1; the Primaquine molecule is deeply entrapped in the cavity of β-cyclodextrin, which was confirmed by analysis of spectral shifts and corresponding absorbance and fluorescence intensities. The Benesi–Hildebrand plot was used to calculate the binding constant of the inclusion complex of PQ with β-CD at room temperature. The Gibbs energy change of the inclusion complex process has been calculated. The \( {\text{p}}K_{\text{a}} \) and \( {\text{p}}K_{\text{a}}^{*} \) for the monocation and neutral equilibrium of PQ in aqueous and β-CD media are discussed. The thermal stability for the inclusion complex of PQ with β-CD has been analyzed using differential scanning calorimetry. The modification of the crystal structure to amorphous for the solid inclusion complex was confirmed by powder X-ray diffraction. The structure of the complex is proposed by docking studies using the Patch-Dock server. A cytotoxic analysis was also carried out for the pure PQ and its solid complex on the MDA MB 231 cell line and showed that the activity is good for both substances. The cytotoxicity neither improved nor decreased with the formation of the inclusion complex with β-CD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4: a
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Baird, K., Stephen, J., Hoffman, L.: Primaquine therapy for malaria. Clin. Infect. Dis. 39, 1336–1345 (2014)

    Article  Google Scholar 

  2. Freudenberg, K., Cramer, F., Plieninger, H.: Inclusion Compounds of Physiologically Active Organic Compounds. German Pat. 895769 (1953)

  3. Szejtli, J., Szente, L.: Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur. J. Pharm. Biopharm. 61, 115–125 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. Shityakov, S., Broscheit, J., Förster, C.: α-Cyclodextrin dimer complexes of dopamine and levodopa derivatives to assess drug delivery to the central nervous system: ADME and molecular docking studies. Int. J. Nanomed. 7, 3211–3219 (2012)

    Article  CAS  Google Scholar 

  5. Lee, C.W., Kim, S.J., Youn, Y.S., Widjojokusumo, E., Lee, Y.H., Kim, J., Lee, Y.W., Tjandrawinata, R.R.: Preparation of bitter taste masked cetirizine dihydrochloride/β-cyclodextrin inclusion complex by supercritical anti-solvent (SAS) process. J. Supercrit. Flu. 55, 348–357 (2010)

    Article  CAS  Google Scholar 

  6. Charlton, A.J., Davis, A.L., Jones, D.P., Lewis, J.R., Davies, A.P., Haslam, E., Williamson, M.P.: The self-association of the black tea polyphenol theaflavin and its complexation with caffeine. J. Chem. Soc. Perkin Trans. 2, 317–322 (2000)

    Article  Google Scholar 

  7. Al-Maaieh, A., Flanagan, D.R.: Salt effects on caffeine solubility, distribution, and self-association. J. Pharm. Sci. 91, 1000–1008 (2001)

    Article  CAS  Google Scholar 

  8. Poltev, V.I., Grokhlina, T.I., González, A., Deriabina, Q., Cruz, L., Gor, J., Leszczynski, L.N., Djimant, A.N.: Veselkov.: the study of three-dimensional structure of caffeine associates using computational and experimental methods. J. Mol. Struct. 709, 123–128 (2004)

    Article  CAS  Google Scholar 

  9. Dong, Z., Liang, Y.R., Fan, F.Y., Ye, J.H., Zheng, X.Q., Lu, J.L.: Adsorption behavior of the catechins and caffeine onto polyvinylpolypyrrolidone. J. Agric. Food Chem. 59, 4238–4247 (2011)

    Article  CAS  PubMed  Google Scholar 

  10. Murugan, M., Rajamohan, R., Sivakumar, K.: A study of host-guest complexation between amodiaquine and native cyclodextrin. Characterization in solid state and its in vitro anticancer activity. J. Macromol. Sci. A 53, 282–283 (2016)

    Article  CAS  Google Scholar 

  11. Anitha, A., Murugan, M., Rajamohan, R.: Molecular encapsulation of amodiaquine in 2-hydroxypropyl β-cyclodextrin cavity. Spectros. Lett. (2018). https://doi.org/10.1080/00387010.2018.1448421

    Article  Google Scholar 

  12. Bhardwaj, R., Dorr, R.T., Blanchard, J.: Approaches to reducing toxicity of parenteral anticancer drug formulations using cyclodextrins. J. Pharm. Sci. Technol. 54, 233–239 (2000)

    CAS  Google Scholar 

  13. Fujishima, N., Kusaka, K., Umino, T., Urushinata, T., Terumi, K.: Flour based foods containing highly branched cyclodextrins. Jpn. Patent JP 136, 898 (2001)

    Google Scholar 

  14. Holland, L., Rizzi, G., Malton, P.: Cosmetic compositions comprising cyclic oligosaccharides and fragrance. PCT Int. Appl. 67, 716 (1999)

    Google Scholar 

  15. Lezcano, M., Ai-Soufi, W., Novo, M., Rodriguez-Nunez, E., Tato, J.V.: Complexation of several benzimidazole-type fugicides with alpha and beta cyclodextrins. J. Agric. Food Chem. 50, 108–112 (2002)

    Article  CAS  PubMed  Google Scholar 

  16. Dufosse, J., Souchon, I., Feron, G., Latrasse, A., Spinnler, H.E.: In situ detoxification of the fermentation medium during γ-decalactone production with the yeast Sporidiobolus salmonicolor. Biotech. Prog. 15, 135–139 (1999)

    Article  CAS  Google Scholar 

  17. Zhou, J., Ritter, H.: Cyclodextrin functionalized polymers as drug delivery systems. Pol. Chem. 1, 1552–1559 (2010)

    Article  CAS  Google Scholar 

  18. Hedges, R.A.: Industrial applications of cyclodextrins. Chem. Rev. 98, 2035–2044 (1998)

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, X., Wang, C.: Supramolecular amphiphiles. Chem. Soc. Rev. 40, 94–101 (2011)

    Article  CAS  PubMed  Google Scholar 

  20. Harada, A., Takashima, Y., Yamaguchi, H.: Cyclodextrin-based supramolecular polymers. Chem. Soc. Rev. 38, 875–882 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. Chen, Y., Liu, Y.: Cyclodextrin-based bioactive supramolecular assemblies. Chem. Soc. Rev. 39, 495–505 (2010)

    Article  CAS  PubMed  Google Scholar 

  22. Nakahata, M., Takashima, Y., Yamaguchi, H., Harada, A.: Redox-responsive self-healing materials formed from host–guest polymers. Nat. Commun. 2, 511 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, G., Jiang, M.: Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem. Soc. Rev. 40, 2254–2266 (2011)

    Article  CAS  PubMed  Google Scholar 

  24. Hetzer, M., Schmidt, B.V.K.J., Barner-Kowollik, C., Ritter, H.: Limitations of cyclodextrin-mediated RAFT homo polymerization and block copolymer formation. J. Pol. Sci. Part A. 51, 2504–2517 (2013)

    Article  CAS  Google Scholar 

  25. Schmidt, B.V.K.J., Hetzer, M., Ritter, H., Barner-Kowollik, C.: Cyclodextrin-complexed RAFT agents for the ambient temperature aqueous living/controlled radical polymerization of acrylamido monomers. Macromolecules 44, 7220–7232 (2011)

    Article  CAS  Google Scholar 

  26. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., Wolfson, H.J.: PatchDock and Symm Dock: servers for rigid and symmetric docking. Nucl. Acids Res. 33, 363–367 (2005)

    Article  CAS  Google Scholar 

  27. Connolly, M.L.: Solvent-accessible surfaces of proteins and nucleic acids. Science 221, 709–711 (1983)

    Article  CAS  PubMed  Google Scholar 

  28. Connolly, M.L.: Analytical molecular surface calculation. J. Appl. Crystallogr. 16, 548–558 (1983)

    Article  CAS  Google Scholar 

  29. Zhang, C., Vasmatzis, G., Cornette, J.L., DeLisi, C.: Determination of atomic desolvation energies from the structures of crystallized proteins. J. Mol. Biol. 267, 707–726 (1997)

    Article  CAS  PubMed  Google Scholar 

  30. Prabu, S., Sivakumar, K., Swaminathan, M., Rajamohan, R.: Preparation and characterization of host–guest system between inosine and beta-cyclodextrin through inclusion mode. Spectrochim. Acta A 147, 151–157 (2015)

    Article  CAS  Google Scholar 

  31. Schulman, S.G., Irene, P.: Dissociation constant of the 9-anthroic acidium cation in the lowest excited singlet state. J. Phys. Chem. 76, 1996–1999 (1972)

    Article  CAS  Google Scholar 

  32. Misiuk, W.: Spectrofluorimetric study on inclusion interaction of beta-cyclodextrin with duloxetine and its analytical application. I. J. Chem. Sec A. 51, 1706–1710 (2012)

    Google Scholar 

  33. Rajamohan, R., Kothai Nayaki, S., Swaminathan, M.: Investigation on association behavior between 1-aminoisoquinoline and β-cyclodextrin in solution and solid state. J. Mol. Liq. 220, 918–925 (2016)

    Article  CAS  Google Scholar 

  34. Enoch, M.V., Rajamohan, R., Swaminathan, M.: Fluorimetric and prototropic studies on the inclusion complexation of 3,3-diaminodiphenylsulphone with β-cyclodextrin and its unusual behavior. Spectrochim. Acta Part A 77, 473–474 (2010)

    Article  CAS  Google Scholar 

  35. Farag, M.A., Altalba, W.Y., Sayed, E.L., Sherbini, A.L.: Spectrophotometric determination of acidity constant of 1-methyl-4-[4′-aminostyryl]quinolinium iodide in aqueous buffer and micellar solutions in the ground and excited states. Asian J. Chem. 25, 6181–6185 (2013)

    Google Scholar 

  36. Duhovny, D., Nussinov, R., Wolfson, H.J.: Efficient unbound docking of rigid molecules. In: Guigó, R., Gusfield, D. (eds.) Algorithms in Bioinformatics. WABI 2002. Lecture Notes in Computer Science. Springer, Berlin (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rajamohan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugan, M., Anitha, A., Sivakumar, K. et al. Supramolecular Interaction of Primaquine with Native β-Cyclodextrin. J Solution Chem 47, 906–929 (2018). https://doi.org/10.1007/s10953-018-0768-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0768-2

Keywords

Navigation