Journal of Solution Chemistry

, Volume 47, Issue 10, pp 1578–1596 | Cite as

The Ethylbenzene/Styrene Preferential Separation with Ionic Liquids in Liquid–Liquid Extraction

  • Monika Karpińska
  • Michał Wlazło
  • Urszula DomańskaEmail author


The objective of this work was to explore the feasibility of using ionic liquids (ILs), namely N-ethyl-N-methylmorpholinium dicyanamide, [EMMor][DCA], (3-hydroxypropyl)-1-methylmorpholinium dicyanamide, [N-C3OHMMor][DCA], 1-(3-hydroxypropyl)-3-methylimidazolium dicyanamide, [N-C3OHMIM][DCA], 1-(3-hydroxypropyl)pyridinium dicyanamide, [N-C3OHPy][DCA], (3-cyanopropyl)pyridinium dicyanamide, [N-C3CNPy][DCA], and (3-cyanopropyl)methylpyrrolidinium dicyanamide, [N-C3CNMPyr][DCA] for the separation of ethylbenzene and styrene. The liquid–liquid equilibrium (LLE) data in ternary systems of {IL (1) + styrene (2) + ethylbenzene (3)} at T = 298.15 K and ambient pressure is presented for the six ILs synthesized by us. The final chromatography analysis of the composition of tie-lines has shown that the studied ILs are not found in the raffinate phase and they show interesting results on the selectivity and solute distribution ratio for styrene extraction. A comparison of different ILs is presented for the studied separation problem. It was observed that the best separation selectivities were found for [N-C3CNPy][DCA] (SAv = 2.38) and [N-C3OHMMor][DCA] (SAv = 2.42) in comparison with other studied ILs in this work and those presented in the literature. While the data presented here are useful from a theoretical standpoint, the possibility of applications for these ILs in technological processes is questionable because of low solute distribution ratios, especially those calculated from the masses [N-C3CNPy][DCA] (βMAv = 0.08) and [N-C3OHMMor][DCA] (βMAv = 0.07). The experimental tie-lines were correlated with the non-random two liquid NRTL model.


Ionic liquids Separation ethylbenzene/styrene Ternary (liquid–liquid) phase diagrams Selectivity Solute distribution ratio NRTL correlation 



This work has been and is supported by the National Centre of Science (NCN) in Poland in the years 2017–2020 (UMO-2016/23/B/ST5/00145).

Supplementary material

10953_2018_755_MOESM1_ESM.docx (49 kb)
Supplementary material 1 (DOCX 49 kb)


  1. 1.
    Wunsch, J.R.: Polystyrene: Sythesis, Production and Applications. Rapra Technology Ltd., Akron (2000)Google Scholar
  2. 2.
    Gentry, J.C., Kumar, S., Wright-Wytcherley, R.: Used extractive distillation to simplify petrochemical processes. Hydrocarb. Process. 93, 62 (2004)Google Scholar
  3. 3.
    Randall, G.A.: Method of separating ethylbenzene from styrene by low pressure drop distillation, U.S. Patent 3,084,108 (1963)
  4. 4.
    Van Tassell, H.M.: Separation of ethylbenzene and styrene by low pressure, high temperature distillation,, U.S. Patent 3,398,063 (1968)
  5. 5.
    Welch, V.A.: Cascade reboiling of ethylbenzene/styrene columns. U.S. Patent 6,171,449 B1 (2001)Google Scholar
  6. 6.
    Ahmad, R., Wong-Foy, A.G., Matzger, A.J.: Microporous coordination polymers as selective sorbents for liquid chromatography. Langmuir 25, 11977–11979 (2009)CrossRefGoogle Scholar
  7. 7.
    Maes, M., Vermoortele, F., Alaert, L., Couck, S., Kirschhock, C.E., Denayer, J.F., De Vos, D.E.: Separation of styrene and ethylbenzene on metal-organic frameworks: analogous structures with different adsorption mechanisms. J. Am. Chem. Soc. 132, 15277–15285 (2010)CrossRefGoogle Scholar
  8. 8.
    Torres-Knoop, A., Heinen, J., Krishna, R., Dubbeldam, D.: Entropic separation of styrene/ethylbenzene mixtures by exploitation of subtle differences in molecular configurations in ordered crystalline nanoporous adsorbents. Langmuir 31, 3771–3778 (2015)CrossRefGoogle Scholar
  9. 9.
    Krishna, R.: Separating mixtures by exploiting molecular packing effects in microporous materials. Phys. Chem. Chem. Phys. 17, 39–59 (2015)CrossRefGoogle Scholar
  10. 10.
    Jafarzadeh, Y., Shafiei, S., Ebadi, A., Abdoli, M.: Batch separation of styrene/ethyl benzene/water dispersions. Iranian J. Chem. Eng. 7, 22–28 (2010)Google Scholar
  11. 11.
    Vega, A., Diez, F., Esteban, R., Coca, J.: Solvent selection for cyclohexane–cyclohexene–benzene separation by extractive distillation using non-steady-state gas chromatography. Ind. Eng. Chem. Res. 36, 803–807 (1997)CrossRefGoogle Scholar
  12. 12.
    Lei, Z., Chen, B., Ding, Z.: Special Distillation Processes, pp. 59–144. Elsevier, Amsterdam (2005)CrossRefGoogle Scholar
  13. 13.
    Chen, B., Lei, Z., Li, Q., Li, C.: Application of CAMD in separating hydrocarbons by extractive distillation. AIChE J. 51, 3114–3121 (2005)CrossRefGoogle Scholar
  14. 14.
    Jongmans, M.T.G., Hermens, E., Raijmakers, M., Maassen, J.I.W., Schuur, B., de Haan, A.B.: Conceptual process design of extractive distillation processes for ethylbenzene/styrene separation. Chem. Eng. Res. Des. 90, 2086–2100 (2012)CrossRefGoogle Scholar
  15. 15.
    Jongmans, M.T.G., Schuur, B., de Haan, A.B.: Ionic liquid screening for ethylbenzene/styrene separation by extractive distillation. Ing. Eng. Chem. Res. 50, 10800–10810 (2011)CrossRefGoogle Scholar
  16. 16.
    Karpińska, M., Domańska, U., Wlazło, M.: Separation of ethylbenzene/styrene systems using ionic liquids in ternary LLE. J. Chem. Thermodyn. 103, 423–431 (2016)CrossRefGoogle Scholar
  17. 17.
    Karpińska, M., Wlazło, M., Domańska, U.: Investigation on the ethylbenzene/styrene separation efficiency with ionic liquids in liquid–liquid extraction. Chem. Eng. Res. Des. 128, 214–220 (2017)CrossRefGoogle Scholar
  18. 18.
    Meindersma, G.W., Hansmeier, A.R., de Haan, A.B.: Ionic liquids for aromatic extraction. Present status and future outlook. Ing. Eng. Chem. Res. 49, 7530–7540 (2010)CrossRefGoogle Scholar
  19. 19.
    Domańska, U., Karpińska, M., Wlazło, M.: Thermodynamic study of molecular interaction-selectivity in separation processs based on limiting activity coefficients. J. Chem. Thermodyn. 121, 112–120 (2018)CrossRefGoogle Scholar
  20. 20.
    Królikowski, M., Królikowska, M.: The study of activity coefficients at infinite dilution for organic solutes and water in 1-butyl-4-methylpyridinium dicyanamide, [B4MPy][DCA] using GLC. J. Chem. Thermodyn. 68, 138–144 (2014)CrossRefGoogle Scholar
  21. 21.
    Karpińska, M., Wlazło, M., Zawadzki, M., Domańska, U.: Separation of binary mixtures hexane/hex-1-ene, cyclohexane/cyclohexene and ethylbenzene/styrene based on gamma infinity data measurements. J. Chem. Thermodyn. 118, 244–254 (2018)CrossRefGoogle Scholar
  22. 22.
    Wlazło, M., Gawkowska, J., Domańska, U.: Separation based on limiting activity coefficients of various solutes in 1-allyl-3-methylimidazolium dicyanamide ionic liquid. Ind. Eng. Chem. Res. 55, 5054–5056 (2016)CrossRefGoogle Scholar
  23. 23.
    Karpińska, M., Wlazło, M., Ramjugernath, D., Naidoo, P., Domańska, U.: Assessment of certain ionic liquids for separation of binary mixtures based on gamma infinity data measurements. RSC Adv. 7, 7092–7107 (2017)CrossRefGoogle Scholar
  24. 24.
    Renon, H., Prausnitz, J.M.: Local composition in thermodynamic excess functions for liquid mixtures. AIChE J. 14, 135–144 (1968)CrossRefGoogle Scholar
  25. 25.
    Karpińska, M., Wlazło, M., Zawadzki, M., Domańska, U.: Liquid–liquid separation of hepane/hex-1-ene and cyclohexane/cyclohexene by dicyanamide-based ionic liquids. J. Chem. Thermodyn. 116, 299–308 (2018)CrossRefGoogle Scholar
  26. 26.
    Domańska, U., Skiba, K., Zawadzki, M., Paduszyński, K., Królikowski, M.: Synthesis, physical, and thermodynamic properties of 1-alkyl-cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide ionic liquids. J. Chem. Thermodyn. 56, 153–161 (2013)CrossRefGoogle Scholar
  27. 27.
    Domańska, U., Walczak, K., Zawadzki, M.: Separation of sulfur compounds from alkanes with 1-alkylcyanopyridinium-based ionic liquids. J. Chem. Thermodyn. 69, 27–35 (2014)CrossRefGoogle Scholar
  28. 28.
    Jongmans, M.T.G., Schuur, B., de Haan, A.B.: Binary and ternary LLE data of the system (ethylbenzene + styrene + 1-ethyl-3-methylimidazolium thiocyanate) and binary VLE data of the system (styrene + 1-ethyl-3-methylimidazolium thiocyanate). J. Chem. Thermodyn. 47, 234–240 (2012)CrossRefGoogle Scholar
  29. 29.
    Walas, S.W.: Phase Equilibria in Chemical Engineering. Butterworth Publishers, Boston (1985)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physical Chemistry, Faculty of ChemistryWarsaw University of TechnologyWarsawPoland
  2. 2.Industrial Chemistry Research InstituteWarsawPoland
  3. 3.Thermodynamic Research Unit, School of EngineeringUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations