Journal of Solution Chemistry

, Volume 47, Issue 4, pp 727–748 | Cite as

Thermodynamic Properties of l-Aspartates of Alkali and Alkali-Earth Metals in Aqueous Solutions at 298.15 and 310.15 K and Specific Cation Effects on Biomolecule Solvation

Article
  • 28 Downloads

Abstract

Vapor pressure osmometry was applied to the systems calcium l-aspartate ((S)-aminobutanedioic acid calcium salt) + water for varying molalities of Ca–l-Asp (mCa–l-Asp = 0.01–1.02 mol·kg−1) and guanidinium hydrochloride (methanamidine hydrochloride) + sodium L–aspartate ((S)–aminobutanedioic acid sodium salt) + water, varying the molalities of GndmCl and Na–l-Asp (mNa–l-Asp = 0.1, 0.25, 0.4, 0.57 mol·kg−1 and mGndmCl = 0.1–1.1 mol·kg−1) at T = 298.15 K and 310.15 K. From vapor pressure osmometry, activities of water, and the corresponding osmotic coefficients of the mixtures Ca–l-Asp + water and Na–l-Asp + GndmCl + water have been calculated, both being directly related to the chemical potentials of the different species and therefore to their Gibbs energy. Mean molal ion activity coefficients were obtained from experimental data fits with the Pitzer equations and the corresponding dual and triple interaction parameters were derived for the Ca–l-Asp + water binary system. β(2) Pitzer parameters different from zero are required for Ca–l-Asp in water to reproduce the osmotic coefficient decrease with increasing concentration. Mean Spherical Approximation parameters accounting for Coulomb and short range interactions that describe the calcium and magnesium aspartates and glutamates are given. The decrease in the chemical potential of the aspartates corresponds to the Hofmeister series: NaAsp > Mg(Asp)2 > CaAsp. A strong interaction between amino acid and salt due to specific dispersion interactions in amino acid salt systems containing guanidinium based salt has been revealed that is in agreement with MD and half-empirical quantum-chemical calculations.

Keywords

Vapor pressure osmometry Osmotic coefficient Calcium l-aspartate Sodium l-aspartate Guanidinium hydrochloride Electrolyte Activity coefficient 

Notes

Acknowledgements

Funding was provided by Scientific-research theme of fundamental studies of Ministry of Education and Science of Ukraine, financed from the state budget of Ukraine. The authors would like to acknowledge gratefully Prof. Vasiliy I. Larin for the permanent help on this research, Olena S. Bondareva, Olesja O. Kulinich for taking part in the experiments.

References

  1. 1.
    Prausnitz, J.M., Lichtenthaler, R.N., de Azevedo, E.G.: Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd edn. Prentice-Hall, Upper Saddle River (1999)Google Scholar
  2. 2.
    Kunz, W. (ed.): Specific Ion Effects. World Scientific, London (2010)Google Scholar
  3. 3.
    Duclohier, H. (ed.): Biophysics of Ion Channels and Diseases. Research Signpost, Kerala (2010)Google Scholar
  4. 4.
    Calvar, N., Gomez, E., Dominguez, A., Macedo, E.A.: Vapour pressures, osmotic and activity coefficients for binary mixtures containing (1-ethylpyridinium ethylsulfate + several alcohols) at T = 323.15 K. J. Chem. Thermodyn. 42, 625–630 (2010)CrossRefGoogle Scholar
  5. 5.
    Calvar, N., Dominguez, A., Macedo, E.A.: Vapour pressures and osmotic coefficients of binary mixtures containing alcohol and pyrrolidinium-based ionic liquids. J. Chem. Thermodyn. 66, 137–143 (2013)CrossRefGoogle Scholar
  6. 6.
    Kushare, S.K., Shaikh, V.R., Terdale, S.S., Dagade, D.H., Kolhapurkar, R.R., Patil, K.J.: Thermodynamics of aqueous polyethylene-glycol (PEG) solutions at 298.15 K: activity, activity coefficients and application of molecular theories. J. Mol. Liq. 187, 129–136 (2013)CrossRefGoogle Scholar
  7. 7.
    Tsurko, E.N., Neueder, R., Kunz, W.: Activity of water, osmotic and activity coefficients of sodium glutamate and sodium aspartate in aqueous solutions at 310.15 K. Acta Chim. Slov. 56, 58–64 (2009)Google Scholar
  8. 8.
    Shuching, O., Di, C., Sandeep, P.: Liquid–vapour interfacial properties of aqueous solutions of guanidinium and methyl guanidinium chloride: influence of molecular orientation and interface fluctuations. J. Phys. Chem. B. 117, 11719–11731 (2013)CrossRefGoogle Scholar
  9. 9.
    Lund, M., Vrbka, L., Jungwirth, P.: Specific ion binding to nonpolar surface patches of proteins. J. Am. Chem. Soc. 130, 11582–11583 (2008)CrossRefGoogle Scholar
  10. 10.
    Vazdar, M., Uhlig, F., Jungwirth, P.: Like-charge ion pairing in water: an ab initio molecular dynamics study of aqueous guanidinium cations. J. Phys. Chem. Lett. 3, 2021–2024 (2012)CrossRefGoogle Scholar
  11. 11.
    Barthel, J., Neueder, R.: Precision apparatus for the static determination of the vapor pressure of solutions. GIT Fachz. Lab. 28, 1002–1012 (1984)Google Scholar
  12. 12.
    Widera, B., Neueder, R., Kunz, W.: Vapor pressures and osmotic coefficients of aqueous solutions of SDS, C6TAB, and C8TAB at 25 °C. Langmuir 19, 8226–8229 (2003)CrossRefGoogle Scholar
  13. 13.
    Gibbard, H.F., Scatchard, G.J., Rousseau, R.A., Creek, J.L.: Liquid–vapor equilibrium of aqueous sodium chloride from 298 to 373 K and from 1 to 6 mol·kg−1, and related properties. J. Chem. Eng. Data 19, 281–288 (1973)CrossRefGoogle Scholar
  14. 14.
    Tsurko, E.N., Neueder, R., Kunz, W.: Water activity and osmotic coefficients in solutions of glycine, glutamic acid, histidine and their salts at 298.15 K and 310.15 K. J. Solution Chem. 36, 651–672 (2007)CrossRefGoogle Scholar
  15. 15.
    Pitzer, K.S. (ed.): Activity Coefficients in Electrolyte Solutions, 2nd edn. CRC Press, Boca Raton, pp. 75–153 (1991)Google Scholar
  16. 16.
    Keenan, J.H., Keyes, F.G., Hill, P.G., Moore, J.G.: Steam Tables: Thermodynamic Properties of Water Including Vapor, Liquid, and Solid Phases. Wiley, New York (1969)Google Scholar
  17. 17.
    Ellison, W.J., Lamkaouchi, K., Moreau, J.-M.: Water: a dielectric reference. J. Mol. Liq. 68, 171–279 (1996)CrossRefGoogle Scholar
  18. 18.
    Tsurko, E.N., Neueder, R., Kunz, W.: Osmotic coefficients of two amino acid magnesium salts at 298.15 and 310.15 K. J. Solution Chem. 45, 313–324 (2016)CrossRefGoogle Scholar
  19. 19.
    Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2–2 electrolytes. J. Solution Chem. 3, 539–546 (1974)CrossRefGoogle Scholar
  20. 20.
    Bonner, O.D.: Osmotic and activity coefficients of sodium and potassium glutamate at 298.15 K. J. Chem. Eng. Data 26, 147–148 (1981)CrossRefGoogle Scholar
  21. 21.
    Blum, L., Hoye, J.S.: Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function. J. Phys. Chem. 81, 1311–1316 (1977)CrossRefGoogle Scholar
  22. 22.
    Carnahan, N.F., Starling, K.E.: Equation of State for Nonattracting Rigid Spheres. J. Chem. Phys. 51(2), 635–636 (1969)CrossRefGoogle Scholar
  23. 23.
    Blum, L.: In: Henderson, H., Eyring, D. (eds.) Theoretical Chemistry: Advances and Perspectives, vol. 5, Academic Press, New York (1980)Google Scholar
  24. 24.
    Krestov, G.A.: Thermodynamics of Ionic Processes in Solutions. Khimija, Leningrad (1984)Google Scholar
  25. 25.
    Kharakoz, D.P.: Volumetric properties of proteins and their analogs in diluted solutions. Biophys. Chem. 34, 115–125 (1989)CrossRefGoogle Scholar
  26. 26.
    Mande, M.M., Kishore, N.: Volumetric properties of aqueous 2-chloroethanol solutions and volumes of transfer of some amino acids and peptides from water to aqueous 2-chloroethanol solutions. J. Solution Chem. 32, 791–802 (2003)CrossRefGoogle Scholar
  27. 27.
    Barrett, G.C. (ed.): Chemistry and Biochemistry of the Amino Acids. Chapman and Hall, London (1985)Google Scholar
  28. 28.
    Held, C., Tsurko, E.N., Neueder, R., Sadowski, G., Kunz, W.: Cation effect on the water activity of ternary (S)-aminobutanedioic acid magnesium salt solutions at 298.15 and 310.15 K. J. Chem. Eng. Data 61, 3190–3199 (2016)CrossRefGoogle Scholar
  29. 29.
    Jungwirth, P., Tobias, D.J.: Molecular structure of salt solutions: a new view of the interface with implications for heterogeneous atmospheric chemistry. J. Phys. Chem. B. 105(43), 10468–10472 (2001)CrossRefGoogle Scholar
  30. 30.
    Jungwirth, P., Tobias, D.J.: Specific ion effects at the air/water interface. Chem. Rev. 106(4), 1259–1281 (2006)CrossRefGoogle Scholar
  31. 31.
    Mason, P.E., Dempsey, C.E., Neilson, G.W., Brady, J.W.: Nanometer-scale ion aggregates in aqueous electrolyte solutions: guanidinium sulfate and guanidinium thiocyanate. J. Phys. Chem. B. 109, 24185–24196 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Institute of ChemistryKarazin National UniversityKharkivUkraine
  2. 2.Institute of Physical and Theoretical ChemistryUniversity of RegensburgRegensburgGermany

Personalised recommendations