Advertisement

Journal of Solution Chemistry

, Volume 47, Issue 4, pp 684–704 | Cite as

Studies of Associated Solutions: Evaluation of Thermodynamic Parameters of Blends of 2-Methylaniline and Substituted Ethanols at Various Temperatures

  • Muvva Raghavendra
  • M. Gowrisankar
  • T. S. Krishna
  • A. Venkatesulu
Article
  • 44 Downloads

Abstract

Densities (ρ), speeds of sound (u), and viscosities (η) are reported for binary mixtures of 2-methylaniline with substituted ethanols (2-phenylethanol, 2-chloroethanol and 2-aminoethanol) over the entire composition range of mole fraction at T = (303.15–318.15) K and at atmospheric pressure, 0.1 MPa. The excess molar volume, excess isentropic compressibility and deviation in viscosity are calculated from the corresponding experimental densities, speeds of sound and viscosities. The excess properties are correlated using the Redlich–Kister polynomial smoothing equation. Excess partial molar volumes and excess partial molar isentropic compressibilities were calculated for all the binary systems throughout the composition range and also at infinite dilution. The variations in these properties with composition, for all the binary mixtures, suggest that loss of dipolar association, difference in size and shape of the component molecules, dipole–dipole interaction and hydrogen bonding between molecules of 2-methylaniline with 2-phenylethanol, 2-chloroethanol and 2-aminoethanol are involved.

Keywords

Density Speed of sound Viscosity 2-Methylaniline Substituted ethanols PFP theory 

Supplementary material

10953_2018_749_MOESM1_ESM.docx (301 kb)
Supplementary material 1 (DOCX 300 kb)

References

  1. 1.
    Hassan, M., Shirude, D.F., Hiray, A.P., Sawant, A.B., Kadam, U.B.: Densities, viscosities and ultrasonic velocities of binary mixtures of methylbenzene with hexan-2-ol, heptan-2-ol and octan-2-ol at T = 298.15 and 308.15 K. Fluid Phase Equilib. 252, 88–95 (2007)CrossRefGoogle Scholar
  2. 2.
    Kharat, S.J., Nikam, P.S.: Density and viscosity studies of binary mixtures of aniline + benzene and ternary mixtures of (aniline + benzene + N,N-dimethylformamide) at 298.15, 303.15, 308.15, and 313.15 K. J. Mol. Liq. 131, 81–85 (2007)CrossRefGoogle Scholar
  3. 3.
    Gowrisankar, M., Venkatesulu, A., Srinivasa Krishna, T., Ravindhranath, K.: Studies on the Importance of chain length of alkanols on the thermodynamic and transport properties of liquid mixtures at various temperatures. J. Chem. Thermodyn. 107, 104–113 (2017)CrossRefGoogle Scholar
  4. 4.
    Yadav Dimple, J.S., Singh, K.C., Sharma, V.K.: Molar excess volumes and excess isentropic compressibilities of 2-methylaniline (i) + benzene (j) + methylbenzene}, {2-methylaniline (i) + benzene (j) + 1,2-dimethylbenzene (k)}, and {2-methylaniline (i) + benzene (j) + 1,4-dimethylbenzene (k) at T = 308.15 K. J. Chem. Eng. Data 54, 2109–2112 (2009)CrossRefGoogle Scholar
  5. 5.
    Saini, N., Yadav, J.S., Sunil, K.J., Sharma, D., Sharma, V.K.: Thermodynamic studies of molecular interactions in mixtures of o-toulidine with pyridine and picolines: excess molar volumes, excess molar enthalpies, and excess isentropic compressibilities. J. Chem. Thermodyn. 43, 782–795 (2011)CrossRefGoogle Scholar
  6. 6.
    Kumar, S., Jeevanandham, P.: Densities, viscosities, refractive indices and excess properties of aniline and o-anisidine with 2-alkoxyethanols at 303.15 K. J. Mol. Liq. 174, 34–41 (2012)CrossRefGoogle Scholar
  7. 7.
    Vogel, A.L.: Text Book of Practical Organic Chemistry. Longman Green, London (1989)Google Scholar
  8. 8.
    Riddick, J.A., Bunger, W.B., Sakano, T.K.: Organic Solvents, 4th edn. Wiley, New York (1986)Google Scholar
  9. 9.
    Sharma, V.K., Solanki, S., Bhagour, S.: Excess heat capacities of binary and ternary mixtures containing 1-ethyl-3-methylimidazolium tetrafluoroborate and anilines. J. Chem. Eng. Data 59, 1852–1864 (2014)CrossRefGoogle Scholar
  10. 10.
    Jangra, S.K., Yadav, J.S., Sharma, V.K.: Thermodynamic investigations of ternary o-toluidine + tetrahydropyran + N,N-dimethylformamide mixture and its binaries at 298.15, 303.15 and 308.15 K. J. Mol. Liq. 163, 36–45 (2011)CrossRefGoogle Scholar
  11. 11.
    Pandiyan, V., Oswal, S.L., Malek, N.I., Vasantharani, P.: Thermodynamic and acoustic properties of binary mixtures of ethers. V. Diisopropyl ether or oxolane with 2- or 3-chloroanilines at 303.15, 313.15 and 323.15 K. Thermochim. Acta 524, 140–150 (2011)Google Scholar
  12. 12.
    Papari, M.M., Ghodrati, H., Fadaei, F., Sadeghi, R., Behrouz, S., Soltani Rad, M.N., Moghadasi, J.: Volumetric and ultrasonic study of mixtures of 2-phenylethanol with 1-butanol, 2-butanol, and 2-methyl-1-butanol at T = (298.15–323.15) K and atmospheric pressure: measurement and prediction. J. Mol. Liq. 180, 121–128 (2013)CrossRefGoogle Scholar
  13. 13.
    Kermanpour, F., Jahani, H., IIoukhani, H.: Excess molar volume and derived thermodynamic properties of binary mixtures of 2-methyl-1-butanol and 2-ethyl-1-butanol + different ethers at the temperature range of 293.15 to 313.15 K. J. Mol. Liq. 146, 29–34 (2009)CrossRefGoogle Scholar
  14. 14.
    Alavianmehr, M.M., Sharifi, M., Rad, M.N.S.: Measurement and modeling of volumetric properties and sound speeds of several mixtures of alcohol liquids containing 1-propanol and 2-propanol at T = (298.15–323.15) K and ambient pressure. Fluid Phase Equilib. 376, 181–192 (2014)CrossRefGoogle Scholar
  15. 15.
    Yeh, C.-T., Tu, C.-H.: Densities, viscosities, refractive indexes, and surface tensions for binary mixtures of 2-propanol + benzyl alcohol, + 2-phenylethanol and benzyl alcohol + 2-phenylethanol at T = (298.15, 308.15, and 318.15) K. J. Chem. Eng. Data 52, 1760–1767 (2007)CrossRefGoogle Scholar
  16. 16.
    Domanska, U., Zawadzki, M., Lewandrowska, A.: Effect of temperature and composition on the density, viscosity, surface tension, and thermodynamic properties of binary mixtures of N-octylisoquinolinium bis{(trifluoromethyl)sulfonyl}imide with alcohols. J. Chem. Thermodyn. 48, 101–111 (2012)CrossRefGoogle Scholar
  17. 17.
    Dyer, J.R.: Applications of Absorption Spectroscopy of Organic Compounds. Prentice-Hall of India, New Delhi (1978)Google Scholar
  18. 18.
    Ferrari, G., Foca, G., Manfredini, M., Manzini, D., Marchetti, A., Tassi, L., Ulrici, A.: Density and volume properties of the 2-chloroethanol + 2-methoxyethanol + 1,2-dimethoxyethane ternary solvent system at different temperatures. J. Solution Chem. 32, 93–116 (2003)CrossRefGoogle Scholar
  19. 19.
    Pandey, P.K., Awasthi, A., Awasthi, A.: Acoustic, volumetric and spectroscopic properties of formamide + N-methylformamide + 2-chloroethanol at different temperatures. Phys. Chem. Liq. 52, 320–330 (2014)CrossRefGoogle Scholar
  20. 20.
    Baragi, J.G., Aralaguppi, M.I., Aminabhavi, T.M., Kariduraganavar, M.Y., Kittur, A.: Density, viscosity, refractive index, and speed of sound for binary mixtures of anisole with 2-chloroethanol, 1,4-dioxane, tetrachloroethylene, tetrachloroethane, DMF, DMSO, and diethyl oxalate at (298.15, 303.15, and 308.15) K. J. Chem. Eng. Data 50, 910–916 (2005)CrossRefGoogle Scholar
  21. 21.
    Alavianmehr, M.M., Shahsavar, S., Ghodrati, H., Hemmati, N.: Measurement and modeling of volumetric properties and speeds of sound of several mixtures of alcohol liquids containing butanediol. J. Chem. Eng. Data 60, 1956–1967 (2015)CrossRefGoogle Scholar
  22. 22.
    Hernandez, J.A., Trejo, A., Flores, B.E.G., Molnar, R.: Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303–373 K. Fluid Phase Equilib. 267, 172–180 (2008)CrossRefGoogle Scholar
  23. 23.
    Garcia-Abuin, A., Gomez-Diaz, D., La Rubia, M.D., Navaza, J.M.: Density, speed of sound, viscosity, refractive index, and excess volume of N-methyl-2-pyrrolidone + ethanol (or water or ethanolamine) from T = (293.15 to 323.15) K. J. Chem. Eng. Data 56, 646–651 (2011)CrossRefGoogle Scholar
  24. 24.
    Aralaguppi, M.I., Jadar, C.V., Aminabhavi, T.M.: Density, viscosity, refractive index, and speed of sound in binary mixtures of 2-chloroethanol with methyl acetate, ethyl acetate, n-propyl acetate, and n-butyl acetate. J. Chem. Eng. Data 44, 441–445 (1999)CrossRefGoogle Scholar
  25. 25.
    Hawrylak, B., Burke, S.E., Palepu, R.: Partial molar and excess volumes and adiabatic compressibilities of binary mixtures of ethanolamines with water. J. Solution Chem. 29, 575–594 (2000)CrossRefGoogle Scholar
  26. 26.
    Pouryousefi, F., Idem, R.O.: New analytical technique for carbon dioxide absorption solvents. Ind. Eng. Chem. Res. 47, 1268–1276 (2008)CrossRefGoogle Scholar
  27. 27.
    Han, J., Jin, J., Dag, A.E., Melaaen, M.C.: Density of water (1) + monoethanolamine (2) + CO2 (3) from (298.15 to 413.15) K and surface tension of water (1) + monoethanolamine (2) from (303.15 to 333.15) K. J. Chem. Eng. Data 57, 1095–1103 (2012)CrossRefGoogle Scholar
  28. 28.
    Ervin, V.Q.: Viscosity of ortho-substituted aromatic amines. J. Chem. Eng. Data 25, 387–388 (1980)CrossRefGoogle Scholar
  29. 29.
    Sekhar, M.C., Sankar, M.G., Venkatesulu, A.: Thermodynamic and theoretical study on hydrogen bonded binary mixtures of isomeric butanols with o-toluidine at T = (303.15 to 318.15) K. J. Mol. Liq. 209, 428–439 (2015)CrossRefGoogle Scholar
  30. 30.
    Balaji, R., Sankar, M.G., Venkatesulu, A., Shekar, M.C.: Mesomeric effect on thermodynamic parameters of binary liquid mixtures of N-methyl formamide and o-substituted anilines. J. Mol. Liq. 230, 36–43 (2017)CrossRefGoogle Scholar
  31. 31.
    Benson, G.C., Kiyohara, O.: Evaluation of excess isentropic compressibilities and isochoric heat capacities. J. Chem. Thermodyn. 11, 1061–1064 (1979)CrossRefGoogle Scholar
  32. 32.
    Zábransky Jr., M., Vlastimil, R.: Estimation of the heat capacities of organic liquids as a function of temperature using group additivity: an amendment. J. Phys. Chem. Ref. Data 33, 1071–1081 (2004)CrossRefGoogle Scholar
  33. 33.
    Redlich, O., Kister, A.T.: Algebraic representation of thermodynamic properties and the classification of solutions. J. Ind. Eng. Chem. 40, 345–348 (1948)CrossRefGoogle Scholar
  34. 34.
    Oswal, S.L., Desai, H.S.: Studies of viscosity and excess molar volume of binary mixtures.: 1. Propylamine + 1-alkanol mixtures at 303.15 and 313.15 K. Fluid Phase Equilib. 149, 359–376 (1998)CrossRefGoogle Scholar
  35. 35.
    Peterson, R.C.: Interactions in the binary liquid system N,N-dimethylacetamide + water: viscosity and density. J. Phys. Chem. 64, 184–185 (1960)CrossRefGoogle Scholar
  36. 36.
    Nakanishi, K., Ichinose, S., Shirai, H.: Prediction of azeotrope formation based on infrared spectral data in binary solutions containing methanol. Ind. Eng. Chem. Fundam. 7, 381–387 (1968)CrossRefGoogle Scholar
  37. 37.
    Kapadi, U.R., Hundiwale, D.G., Patil, N.B., Lande, M.K.: Viscosities, excess molar volume of binary mixtures of ethanolamine with water at 303.15, 308.15, 313.15 and 318.15 K. Fluid Phase Equilib. 201, 335–341 (2002)CrossRefGoogle Scholar
  38. 38.
    Brocos, P., Calvo, E., Pineiro, A., Bravo, R., Amigo, A.: Heat capacities, excess enthalpies, and volumes of mixtures containing cyclic ethers. 5. Binary systems {1,3-dioxolane + 1-alkanols}. J. Chem. Eng. Data 44, 1341–1347 (1999)CrossRefGoogle Scholar
  39. 39.
    Amigo, A., Bravo, R., Pintos, M.: Excess volumes of binary mixtures containing cyclic ethers + alkanols at 298.15 K. J. Chem. Eng. Data 38, 141–142 (1993)CrossRefGoogle Scholar
  40. 40.
    Heintz, A., Schmittecker, B., Wagner, D., Lichtenthaler, R.N.: Excess volumes of binary 1-alkanol/hexane mixtures at temperatures between 283.15 and 323.15 K. J. Chem. Eng. Data 31, 487–492 (1986)CrossRefGoogle Scholar
  41. 41.
    Valtz, A., Teodorescu, M., Wichterle, I., Richon, D.: Liquid densities and excess molar volumes for water + diethylene glycolamine, and water, methanol, ethanol, 1-propanol + triethylene glycol binary systems at atmospheric pressure and temperatures in the range of 283.15–363.15 K. Fluid Phase Equilib. 215, 129–142 (2004)CrossRefGoogle Scholar
  42. 42.
    Villa, S., Riesco, N., Carmona, F.J., Garcia de la Fuente, I., Gonzalez, J.A., Cobos, J.C.: Temperature dependence of excess properties in alcohols + ethers mixtures: I. Excess molar volumes of 1-propanol or 1-hexanol + ethers at 318.15 K. Thermochim. Acta 362, 169–177 (2000)CrossRefGoogle Scholar
  43. 43.
    Venkatramana, L., Sivakumar, K., Gardas, R.L., Dayananda Reddy, K.: Effect of chain length of alcohol on thermodynamic properties of their binary mixtures with benzylalcohol. Thermochim. Acta 581, 123–132 (2014)CrossRefGoogle Scholar
  44. 44.
    Rauf, M.A., Arfan, M., Aziz, F.: Excess molar volumes of (N,N′-dimethylformamide + an aliphatic alcohol) at 298.15 K. J. Chem. Thermodyn. 15, 1021–1023 (1983)CrossRefGoogle Scholar
  45. 45.
    Ali, A., Nain, A.K., Sharma, V.K., Shmad, S.: Molecular interactions in binary mixtures of tetrahydrofuran with alkanols (C6, C8, C10): an ultrasonic and volumetric study. Indian J. Pure Appl. Phys. 42, 666–673 (2004)Google Scholar
  46. 46.
    Krestov, G.A.: Thermodynamics of Salvation. Ellis Horwood Limited, England (1991)Google Scholar
  47. 47.
    Comelli, F., Ottani, S., Francesconi, R., Castellari, C.: Densities, viscosities, and eefractive indices of binary mixtures containing n-hexane + components of pine resins and essential oils at 298.15 K. J. Chem. Eng. Data 47, 93–97 (2002)CrossRefGoogle Scholar
  48. 48.
    Gill, D.S., Cheema, T.S.: Preferential solvation of ions in mixed solvents—I: conductance and viscosity measurements of electrolytes in N,N-dimethylformamide + acetonitrile mixtures 25 °C. Z. Phys. Chem (N.F) 134, 205–214 (1983)CrossRefGoogle Scholar
  49. 49.
    Marcus, Y.: Ion Solvation. Wiley, New York (1985)Google Scholar
  50. 50.
    Prolongo, M.G., Mesagosa, R.M., Fuentes, H.I., Horta, A.: Viscosities and excess volumes of binary mixtures formed by the liquids acetonitrile, pentyl acetate, 1-chlorobutane, and carbon tetrachloride at 25 °C. J. Phys. Chem. 88, 2163–2167 (1984)CrossRefGoogle Scholar
  51. 51.
    Iloukhani, H., Rezaei-Sameti, M.: Excess molar volumes of the ternary system methylcyclohexane (1) + cyclohexane (2) + n-alkanes (3) at T = 298.15 K. J. Chem. Thermodyn. 37, 1151–1161 (2005)CrossRefGoogle Scholar
  52. 52.
    Brocos, P., Pineiro, A., Bravo, R., Amigo, A.: Refractive indices, molar volumes and molar refractions of binary liquid mixtures: concepts and correlations. Phys. Chem. Chem. Phys. 5, 550–557 (2003)CrossRefGoogle Scholar
  53. 53.
    Pineiro, A., Brocos, P., Amigo, A., Pintos, M., Bravo, R.: Prediction of excess volumes and excess surface tensions from experimental refractive indices. Phys. Chem. Liq. 38, 251–260 (2000)CrossRefGoogle Scholar
  54. 54.
    Venkateswara Rao, P., Gowrisankar, M., Venkatramana, L., Srinivasa Krishna, T., Ravindhranath, K.: Studies on the importance of nature of substituent on the thermodynamic and transport properties of liquid mixtures at various temperatures. J. Chem. Thermodyn. 101, 92–101 (2016)CrossRefGoogle Scholar
  55. 55.
    Wang, H., Liu, W., Huang, J.: Densities and volumetric properties of a (xylene + dimethyl sulfoxide) at temperature from (293.15 to 353.15) K. J. Chem. Thermodyn. 36, 743–752 (2004)CrossRefGoogle Scholar
  56. 56.
    Hawrylak, B., Gracie, K., Palepu, R.: Thermodynamic properties of binary mixtures of butanediols with water. J. Solution Chem. 27, 17–31 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Muvva Raghavendra
    • 1
  • M. Gowrisankar
    • 2
  • T. S. Krishna
    • 3
  • A. Venkatesulu
    • 4
  1. 1.Department of PhysicsRayalaseema UniversityKurnoolIndia
  2. 2.Department of ChemistryJ.K.C.C. Acharya Nagarjuna UniversityGunturIndia
  3. 3.Department of PhysicsA.S.N Women’s Engineering CollegeTenaliIndia
  4. 4.Department of PhysicsGovt. First Grade CollegeBangaloreIndia

Personalised recommendations