Journal of Solution Chemistry

, Volume 47, Issue 4, pp 654–666 | Cite as

Thermochemical Properties of the Dissolution of Rubidium d-Gluconate Rb[d-C6H11O7]2(s) in Aqueous Solutions

  • You-Ying Di
  • Yu-Pu Liu
  • Yu-Xia Kong
  • Chun-Sheng Zhou
  • Sheng-Li Gao


A novel coordination compound rubidium d-gluconate Rb[d-C6H11O7](s) has been synthesized and characterized by chemical analysis, elemental analysis, and X-ray diffraction. Single-crystal X-ray analysis reveals that the crystal is monoclinic with space group P21 and Z = 2. Also, the d-gluconate anion in Rb[d-C6H11O7](s) has a bent-chain conformation, in which the carbon atoms of the anion form two approximate planes. The compound exhibits an obvious chelation of the d-gluconate anions to the rubidum(I) cation and the cation is seven-coordinated to all seven oxygen atoms. The lattice potential energy and ionic volume of the anion d-\( {\text{C}}_{ 6} {\text{H}}_{ 1 1} {\text{O}}_{7}^{ - } \) were obtained to be UPOT = 484.23 kJ·mol−1 and V = 0.2004 nm3 from crystallographic data. Molar enthalpies of dissolution of Rb[d-C6H11O7](s) in double-distilled water at various molalities were measured by use of an isoperibol solution–reaction calorimeter at T = 298.15 K. According to Pitzer’s electrolyte solution model, the molar enthalpy of dissolution of the title compound at infinite dilution was determined to be \( \Delta_{\text{s}} H_{\text{m}}^{\infty } = (29.76 \pm 0.72){\text{ kJ}}{\cdot}{\text{mol}}^{ - 1} \). The values of the apparent relative molar enthalpies (\( ^{\phi } L_{{}} \)) of the title compound and relative partial molar enthalpies (\( \bar{L}_{2} \) and \( \bar{L}_{1} \)) of the solute and the solvent at different concentrations were derived from the experimental enthalpies of dissolution of the compound. Furthermore, the molar enthalpy of hydration of the anion d-\( {\text{C}}_{ 6} {\text{H}}_{ 1 1} {\text{O}}_{7}^{ - } \) was calculated to be ΔH = − (166.4 ± 2.7) kJ·mol−1 by use of a thermochemical cycle.


Rubidium d-gluconate Crystal structure Lattice potential energy Isoperibol solution–reaction calorimeter Molar enthalpy of dissolution at infinite dilution Molar enthalpy of hydration 



This work was financially supported by the National Natural Science Foundations of China under contracts NSFC Nos. 21273100 and 21273171, and Plan Project of Science and Technology of Shangluo city in China under the Project Number SK2015-21.


  1. 1.
    Julia, B.N., Michael, E.E.: The association constants of H+ and Ca2+ with 2-keto-d-gluconate in aqueous solutions. J. Solution Chem. 34, 789–800 (2005)CrossRefGoogle Scholar
  2. 2.
    Zhang, Z.C., Gibson, P., Clark, S.B., Tian, G.X., Zanonato, P.L., Rao, L.F.: Lactonization and protonation of gluconic acid: a thermodynamic and kinetic study by potentiometry, NMR and ESI-MS. J. Solution Chem. 36, 1187–1200 (2007)CrossRefGoogle Scholar
  3. 3.
    Znad, H., Markos, J., Bales, V.: Production of gluconic acid from glucose by Aspergillus niger: growth and non-growth conditions. Process Biochem. 39, 1341–1345 (2004)CrossRefGoogle Scholar
  4. 4.
    Amin, M.A., Abd El Rehim, S.S., El-Lithy, A.S.: Corrosion, passivation and breakdown of passivity of Al and Al–Cu alloys in gluconic acid solutions. Electrochim. Acta 55, 5996–6003 (2010)CrossRefGoogle Scholar
  5. 5.
    Giroux, S., Rubini, P., Henry, B., Aury, S.: Complexes of praseodymium(III) with d-gluconic acid. Polyhedron 19, 1567–1574 (2000)CrossRefGoogle Scholar
  6. 6.
    Qin, J.F.: Possible necessity and unique neurophysiological functions of rubidium. Guangdong Microelement Sci. 7(8), 1–18 (2000)Google Scholar
  7. 7.
    He, D.H., Di, Y.Y., Liu, Y.P., Dan, W.Y.: Thermochemistry of 2-aminopyridine (C5H6N2)(s). J. Solution Chem. 40, 900–906 (2011)CrossRefGoogle Scholar
  8. 8.
    Zhang, L.J., Di, Y.Y., Dou, J.M.: Thermochemical properties of n-undecylammonium bromide monohydrate C11H28BrNO(s). J. Solution Chem. 42, 52–59 (2013)CrossRefGoogle Scholar
  9. 9.
    Di, Y.Y., Xu, D., Kong, Y.X., Zhou, C.S.: Thermochemical properties of dissolution of nicotinic acid C6H5NO2(s) in aqueous solution. J. Solution Chem. 46, 886–895 (2017)CrossRefGoogle Scholar
  10. 10.
    Sheldrick, G.M.: A short history of SHELX. Acta Crystallogr. A64, 112–122 (2008)CrossRefGoogle Scholar
  11. 11.
    Liu, Y.P., Di, Y.Y., He, D.H., Kong, Y.X., Yang, W.W., Dan, W.Y.: Lattice potential energy and thermochemical properties of ethylenediamine dihydrochloride (C2H10N2Cl2). J. Chem. Thermodyn. 42, 513–517 (2010)CrossRefGoogle Scholar
  12. 12.
    Rychly, R., Pekarek, V.: The use of potassium chloride and tris(hydroxymethyl) aminomethane as standard substances for solution calorimetry. J. Chem. Thermodyn. 9, 391–396 (1977)CrossRefGoogle Scholar
  13. 13.
    Littleton, C.D.: A structure determination of the gluconate ion. Acta Crystallogr. 6, 775–781 (1953)CrossRefGoogle Scholar
  14. 14.
    Lis, T.: Structure of sodium d-gluconate, Na[C6H11O7]. Acta Crystallogr. C40, 376–378 (1984)Google Scholar
  15. 15.
    Lis, T.: Structure of lead(II) d-gluconate, Pb[C6H11O7]2. Acta Crystallogr. C40, 374–376 (1984)Google Scholar
  16. 16.
    Jenkins, H.D.B., Glasser, L.: Ionic hydrates, MpXq·nH2O: lattice energy and standard enthalpy of formation estimation. Inorg. Chem. 41, 4378–4388 (2002)CrossRefGoogle Scholar
  17. 17.
    Jenkins, H.D.B., Tudela, D., Glasser, L.: Lattice potential energy estimation for complex ionic salts from density measurements. Inorg. Chem. 41, 2364–2367 (2002)CrossRefGoogle Scholar
  18. 18.
    Glasser, L., Jenkins, H.D.B.: Internally consistent ion volumes and their application in volume-based thermodynamics. Inorg. Chem. 47, 6195–6202 (2008)CrossRefGoogle Scholar
  19. 19.
    Pitzer, K.S. (ed.): Activity Coefficients in Electrolyte Solutions, revised edn. CRC Press, Boca Raton (1991)Google Scholar
  20. 20.
    Pitzer, K.S.: Ion interaction approach: theory and data correlation. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, revised edn. CRC Press, Boca Raton (1991)Google Scholar
  21. 21.
    Fu, X.C., Shen, W.X., Yao, T.Y., Hou, W.H.: Physical Chemistry, p. 497. Higher Education Press, Beijing (2005)Google Scholar
  22. 22.
    Cox, J.D., Wagman, D.D., Medvedev, V.A.: CODATA Key Values for Thermodynamics. Hemisphere Publishing Corp., New York (1989)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • You-Ying Di
    • 1
  • Yu-Pu Liu
    • 2
  • Yu-Xia Kong
    • 2
  • Chun-Sheng Zhou
    • 1
  • Sheng-Li Gao
    • 1
  1. 1.College of Chemical Engineering and Modern MaterialsShangluo University/Shaanxi Key Laboratory of Comprehensive Utilization of Tailings ResourcesShangluoPeople’s Republic of China
  2. 2.Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical EngineeringLiaocheng UniversityLiaochengPeople’s Republic of China

Personalised recommendations