Skip to main content
Log in

Interaction of a Surface-Active Ionic Liquid with an Antidepressant Drug: Micellization and Spectroscopic Studies

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The interaction of the antidepressant drug nortriptyline hydrochloride (NOT) with the surface-active ionic liquid (SAIL), 1-decyl-3-methylimidazolium chloride, [C10mim][Cl], has been studied using multiple techniques, including conductometric titration, tensiometric, fluorometric, dynamic light scattering and UV–visible spectrophotometric measurements. There is a significant decrease in the cmc of SAIL on the addition of the drug NOT, indicating adsorption of drug molecules in the outer portion of the micelle. In the present study, the values of the packing parameter, P, lie in the range of 0–0.3, which suggests that the micelles formed are spherical in nature. More negative values of the standard Gibbs energy of adsorption, \( \Delta G_{\text{ad}}^{ \circ } \), compared to \( \Delta G_{\text{m}}^{ \circ } \) support our contention that adsorption of SAIL on the air-solution interface is relatively more favorable than its micellization in the presence of NOT. Fluorescence and DLS studies indicate that the aggregation number, Nagg, and hydrodynamic radius of SAIL increase with increase in concentration of NOT. The UV–visible spectroscopic study confirms the formation of a new complex between SAIL and NOT; this is also supported by the negative Gibbs energy of complexation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mahajan, S., Sharma, R., Mahajan, R.K.: An investigation of drug binding ability of a surface active ionic liquid: Micellization, electrochemical, and spectroscopic studies. Langmuir 28, 17238–17246 (2012)

    Article  CAS  Google Scholar 

  2. Earle, M.J., Esperanca, J.M.S.S., Gilea, M.A., Canongia Lopes, J.N., Rebelo, L.P.N., Magee, J.W., Seddon, K.R., Widegren, J.A.: The distillation and volatility of ionic liquids. Nature 439, 831–834 (2006)

    Article  CAS  Google Scholar 

  3. Luczak, J., Jungnickel, C., Lacka, I., Stolte, S., Hupka, J.: Antimicrobial and surface activity of 1-alkyl-3-methylimidazolium derivatives. Green Chem. 12, 593–601 (2010)

    Article  CAS  Google Scholar 

  4. Zafarani-Moattar, M.T., Shekaari, H., Mazaher, E.: Effect of ionic liquids, 1-butyl-3-methyl imidazolium bromide and 1-hexyl-3-methyl imidazolium bromide on the vapour-liquid equilibria of the aqueous d-fructose solutions at 298.15 K and atmospheric pressure using isopiestic method. J. Chem. Thermodyn. 93, 142–150 (2017)

    Article  Google Scholar 

  5. Behera, K., Om, H., Pandey, S.: Modifying properties of aqueous cetyltrimethylammonium bromide with external additives: Ionic liquid 1-hexyl-3-methylimidazolium bromide versus cosurfactant n-hexyltrimethylammonium bromide. J. Phys. Chem. B 113, 786–793 (2009)

    Article  CAS  Google Scholar 

  6. Tourne-Peteith, C., Coasne, B., In, M., Brevet, D., Devoisselle, J.M., Vioux, A., Viau, L.: Surfactant behavior of ionic liquids involving a drug: from molecular interactions to self-assembly. Langmuir 30, 1229–1238 (2014)

    Article  Google Scholar 

  7. Galgano, P.D., El Seoud, O.A.: Micellar properties of surface active ionic liquids: a comparison of 1-hexadecyl-3-methylimidazolium chloride with structurally related cationic surfactants. J. Colloid Interface Sci. 345, 1–11 (2010)

    Article  CAS  Google Scholar 

  8. Khan, A.B., Ali, M., Malik, N.A., Ali, A., Patel, R.: Role of 1-methyl-3-octylimidazolium chloride in the micellization behavior of amphiphilic drug amitriptyline hydrochloride. Colloids Surf. B 112, 460–465 (2013)

    Article  CAS  Google Scholar 

  9. Lipinski, C.A.: Poor aqueous solubility—an industry wide problem in drug delivery. Am. Pharm. Res. 19, 1894–1900 (2002)

    Article  Google Scholar 

  10. Bhat, P.A., Dar, A.A., Rather, G.M.: Solubilization capabilities of some cationic, anionic, and nonionic surfactants toward the poorly water-soluble antibiotic drug erythromycin. J. Chem. Eng. Data 53, 1271–1277 (2008)

    Article  CAS  Google Scholar 

  11. Myers, D.: Surfactant Science and Technology. Wiley-Interscience, Hoboken (2006)

    Google Scholar 

  12. Gao, Z., Lukyanov, A.N., Singhal, A., Torchilin, V.P.: Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano Lett. 2, 979–982 (2002)

    Article  CAS  Google Scholar 

  13. Lawrence, M.J.: Surfactant systems: their use in drug delivery. Chem. Soc. Rev. 23, 417–424 (1994)

    Article  CAS  Google Scholar 

  14. Torchilin, V.P.: Structure and design of polymeric surfactant-based drug delivery systems. J. Controlled Release 73, 137–172 (2001)

    Article  CAS  Google Scholar 

  15. Barnes, G.T., Gentle, I.R.: Interfacial Science: An Introduction. Oxford University Press Inc, New York (2005)

    Google Scholar 

  16. Matrgesin, R., Schinner, F.: Oil biodegradation potential in Alpine habitat. Int. Biodeterior. Biodegrad. 30, 262–265 (1998)

    Google Scholar 

  17. Hrenovic, J., Ivankovic, T.: Toxicity of anionic and cationic surfactant to Acinetobacter junii in pure culture. Central Eur. J. Biol. 2, 405–414 (2007)

    CAS  Google Scholar 

  18. Massey, J.A., Winnik, M.A., Manners, I., Chan, V.Z.H., Ostermann, J.M., Enchelmaier, R., Spatz, J.P., Moller, M.: Fabrication of oriented nanoscopic ceramic lines from cylindrical micelles of an organometallic polyferrocene block copolymer. J. Am. Chem. Soc. 123, 3147–3148 (2001)

    Article  CAS  Google Scholar 

  19. Savic, R., Luo, L.B., Eisenberg, A., Maysinger, D.: Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300, 615–618 (2003)

    Article  CAS  Google Scholar 

  20. Alexandridis, P., Lindman, B. (eds.): Amphiphilic Block Copolymers: Self-assembly and Applications. Elsevier, Amsterdam (2000)

    Google Scholar 

  21. Luczak, J., Jungnickel, C., Markiewiz, M., Hupka, J.: Solubilization of benzene, toluene, and xylene (BTX) in aqueous micellar solutions of amphiphilic imidazolium ionic liquids. J. Phys. Chem. B 117, 5653–5658 (2013)

    Article  CAS  Google Scholar 

  22. Singh, T., Kumar, A.: Aggregation behavior of ionic liquids in aqueous solutions: effect of alkyl chain length, cations, and anions. J. Phys. Chem. B 111, 7843–7851 (2007)

    Article  CAS  Google Scholar 

  23. Chabba, S., Kumar, S., Aswal, V.K.T., Kang, S., Mahajan, R.K.: Interfacial and aggregation behavior of aqueous mixtures of imidazolium based surface active ionic liquids and anionic surfactant sodium dodecylbenzenesulfonate. Colloids Surf. A 472, 9–20 (2015)

    Article  CAS  Google Scholar 

  24. Khan, A.B., Ali, M., Dohare, N., Singh, P., Patel, R.: Micellization behavior of the amphiphilic drug promethazine hydrochloride with 1-decyl-3-methylimidazolium chloride and its thermodynamic characteristics. J. Mol. Liq. 198, 341–346 (2014)

    Article  CAS  Google Scholar 

  25. Lawrence, M.J., Rees, G.D.: Microemulsion-based media as novel drug delivery systems. Adv. Drug Delivery Rev. 45, 89–121 (2000)

    Article  CAS  Google Scholar 

  26. Okochi, H., Nakano, M.: Preparation and evaluation of w/o/w type emulsions containing vancomycin. Adv. Drug Delivery Rev. 45, 5–26 (2000)

    Article  CAS  Google Scholar 

  27. Florence, A.T., Hussain, N.: Transcytosis of nanoparticle and dendrimer delivery systems: evolving vistas. Adv. Drug Delivery Rev. 50, 69–89 (2001)

    Article  Google Scholar 

  28. Al-Ahmadi, M.D.A., Naqvi, A.Z., Akram, M.: Conductometric study of antidepressant drug–cationic surfactant mixed micelles in aqueous solution. Colloids Surf. B 64, 65–69 (2008)

    Article  Google Scholar 

  29. Sharma, R., Nandni, D., Mahajan, R.K.: Interfacial and micellar properties of mixed systems of tricyclic antidepressant drugs with polyoxyethylene alkyl ether surfactants. Colloids Surf. A 451, 107–116 (2014)

    Article  CAS  Google Scholar 

  30. Tripathi, K.D.: Essentials of Medical Pharmacology, 4th edn. Jaypee Brothers, Medical Publishers (P) Ltd, New Delhi (1999)

    Google Scholar 

  31. Padday, J.F., Pitt, A.R., Pashley, R.M.: Menisci at a free liquid surface: surface tension from the maximum pull on a rod. J. Chem. Soc. Faraday Trans. 1(71), 1919–1931 (1975)

    Article  Google Scholar 

  32. Farooq, U., Ali, A., Patel, R., Malik, N.A.: Self-aggregation of ionic liquid-cationic surfactant mixed micelles in water and in diethylene glycol–water mixtures: conductometric, tensiometric, and spectroscopic studies. J. Mol. Liq. 234, 452–462 (2017)

    Article  CAS  Google Scholar 

  33. Ali, A., Uzair, S., Farooq, U., Ali, M.: Effect of tartrazine dye on micellization of cationic surfactants: conductometric, spectrophotometric, and tensiometric studies. Color. Technol. 132, 376–386 (2016)

    Article  CAS  Google Scholar 

  34. Pethybridge, A.D., Talbat, J.D.R., House, W.A.: Precise conductance measurements on dilute aqueous solutions of sodium and potassium hydrogenphosphate and dihydrogenphosphate. J. Solution Chem. 35, 381–393 (2006)

    Article  CAS  Google Scholar 

  35. Rosen, M.J.: Surfactants and Interfacial Phenomena, 3rd edn. Willey-Interscience, New York (2004)

    Book  Google Scholar 

  36. Moroi, Y.: Micelles: Theoretical and Applied Aspects. Plenum Press, New York (1992)

    Book  Google Scholar 

  37. Evans, D.F., Wennerstrom, H.: The Colloidal Domain, Where Physics, Chemistry, Biology, and Technology Meet, 2nd edn. Wiley-VCH, New York (1999)

    Google Scholar 

  38. Bazito, R.C., El Seoud, O.A.: Sugar-based surfactants: adsorption and micelle formation of sodium methyl 2-acylamido-2-deoxy-6-O-sulfo-d-glucopyranosides. Langmuir 18, 4362–4366 (2002)

    Article  CAS  Google Scholar 

  39. El-Dossoki, F.I.: Micellization thermodynamics of some imidazolium ionic liquids in aqueous solutions—conductometric study. J. Solution Chem. 42, 125–135 (2013)

    Article  CAS  Google Scholar 

  40. Frahm, J., Diekmann, S., Haase, A.: Electrostatic properties of ionic micelles in aqueous solutions. Ber. Bunsenge. Phys. Chem. 84, 566–571 (1980)

    Article  CAS  Google Scholar 

  41. Evans, H.: Alkyl sulphates. Part I. Critical micelle concentrations of the sodium salts. J. Chem. Soc. 78, 579–586 (1956)

    Article  Google Scholar 

  42. Luczak, J., Jungnickel, C., Joskowska, M., Thoming, J., Hupka, J.: Thermodynamics of micellization of imidazolium ionic liquids in aqueous solutions. J. Colloid Interface Sci. 336, 111–116 (2009)

    Article  CAS  Google Scholar 

  43. Okano, T., Tamura, T., Nanako, T., Ueda, S., Lee, S., Sugihara, G.: Effects of side chain length and degree of counterion binding on micellization of sodium salts of α-myristic acid alkyl esters in water: a thermodynamic study. Langmuir 16, 3777–3783 (2000)

    Article  CAS  Google Scholar 

  44. Gorski, N., Kalus, J.: Temperature dependence of the sizes of tetradecyltrimethylammonium bromide micelles in aqueous solutions. Langmuir 17, 4211–4215 (2001)

    Article  CAS  Google Scholar 

  45. Barbosa, L.R.S., Caetano, W., Itri, R., Homemde Mello, P., Santiago, P.S., Tabak, M.: Interaction of phenothiazine compounds with zwitterionic lysophosphatidylcholine micelles: small angle X-ray scattering, electronic absorption spectroscopy, and theoretical calculations. J. Phys. Chem. B 110, 13086–13093 (2006)

    Article  CAS  Google Scholar 

  46. Anand, K., Yadav, O.P.P., Singh, P.: Studies on the surface and thermodynamic properties of some surfactants in aqueous and water + 1,4-dioxane solutions. Colloids Surf. 55, 345–358 (1991)

    Article  CAS  Google Scholar 

  47. Farooq, U., Ali, A., Patel, R., Malik, N.A.: Interaction between amphiphilic antidepressant drug nortryptyline hydrochloride and conventional cationic surfactants: a physicochemical study. J. Mol. Liq. 233, 310–318 (2017)

    Article  CAS  Google Scholar 

  48. Rub, M.A., Azum, N., Asiri, A.M.: Interaction of cationic amphiphilic drug nortryptyline hydrochloride with TX-100 in aqueous and urea solutions and the studies of physicochemical parameters of the mixed micelles. J. Mol. Liq. 218, 595–603 (2016)

    Article  Google Scholar 

  49. Mukherjee, S., Mitra, D., Bhattacharya, S.C., Panda, A.K., Moulik, S.P.: Physicochemical studies on the micellization behavior of cetylpyridinium chloride and triton X-100 binary mixtures in aqueous medium. Colloid J. 71, 677–686 (2009)

    Article  CAS  Google Scholar 

  50. Ali, A., Farooq, U., Uzair, S., Patel, R.: Conductometric and tensiometric studies on the mixed micellar systems of surface-active ionic liquid and cationic surfactants in aqueous medium. J. Mol. Liq. 223, 589–602 (2016)

    Article  CAS  Google Scholar 

  51. Sulthana, S.B., Rao, P.V.C., Bhat, S.G.T., Rakshit, A.K.: Interfacial and thermodynamic properties of SDBS–C12E10 mixed micelles in aqueous media: effect of additives. J. Phys. Chem. B 102, 9653–9660 (1998)

    Article  CAS  Google Scholar 

  52. Chakraborty, T., Ghosh, S., Moulik, S.P.: Micellization and related behavior of binary and ternary surfactant mixtures in aqueous medium: cetyl pyridinium chloride (CPC), cetyl trimethyl ammonium bromide (CTAB), and polyoxyethylene (10) cetyl ether (Brij-56) derived system. J. Phys. Chem. B 109, 14813–14823 (2005)

    Article  CAS  Google Scholar 

  53. Bai, G., Lopes, A., Bastos, M.: Thermodynamics of micellization of alkylimidazolium surfactants in aqueous solution. J. Chem. Thermodyn. 40, 1509–1516 (2008)

    Article  CAS  Google Scholar 

  54. Zheng, L., Guo, C., Wang, J., Liang, X., Chen, S., Ma, J., Yang, B., Jiang, Y., Liu, H.: Effect of ionic liquids on the aggregation behavior of PEO-PPO-PEO block copolymers in aqueous solution. J. Phys. Chem. B 111, 1327–1333 (2007)

    Article  CAS  Google Scholar 

  55. Gohain, B., Saikia, P.M., Sarma, S., Bhat, S.N., Dutta, R.K.: Hydrophobicity-induced deprotonation of dye in dye-submicellar surfactant systems. Phys. Chem. Chem. Phys. 4, 2617–2620 (2002)

    Article  CAS  Google Scholar 

  56. Dutta, R.K., Bhat, S.N.: Interaction of phenazinium dyes and methyl orange with micelles of various charge types. Colloids Surf. A 106, 127–134 (1996)

    Article  CAS  Google Scholar 

  57. Uzair, S., Farooq, U., Bidhurib, P., Ali, A.: Interaction of cresol red dye with some basic amino acids under different pH conditions. J. Chin. Chem. Soc. (2017). https://doi.org/10.1002/jccs.201700138

    Google Scholar 

  58. Mukhopadhyay, M., Varma, C.S., Bhowmik, B.B.: Spectrophotometric and thermodynamic studies of micellar interaction of surfactants with p-Nitrophenol. Colloid Polym. Sci. 268, 447–451 (1990)

    Article  CAS  Google Scholar 

  59. Ghanadzadeh, A., Zeini, A., Kashef, A.: Environment effect on the electronic absorption spectra of crystal violet. J. Mol. Liq. 133, 61–67 (2007)

    Article  CAS  Google Scholar 

  60. Shiraishi, Y., Sumiya, S., Kohno, Y., Hirai, T.: Cyclen conjugate as a highly sensitive and selective fluorescent chemosensor for Hg(II). J. Org. Chem. 73, 8571–8574 (2008)

    Article  CAS  Google Scholar 

  61. Paul, B.K., Samanta, A., Guchhait, N.: Exploring hydrophobic subdomain IIA of the protein bovine serum albumin in the native, intermediate, unfolded, and refolded states by a small fluorescence molecular reporter. J. Phys. Chem. B 114, 6183–6196 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Ummer Farooq is thankful to the UGC (University Grants Commission), Government of India, for providing a scholarship in the form of BSR (Basic Scientific Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, U., Patel, R. & Ali, A. Interaction of a Surface-Active Ionic Liquid with an Antidepressant Drug: Micellization and Spectroscopic Studies. J Solution Chem 47, 568–585 (2018). https://doi.org/10.1007/s10953-018-0739-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0739-7

Keyword

Navigation