Journal of Solution Chemistry

, Volume 47, Issue 3, pp 568–585 | Cite as

Interaction of a Surface-Active Ionic Liquid with an Antidepressant Drug: Micellization and Spectroscopic Studies

  • Ummer Farooq
  • Rajan Patel
  • Anwar Ali


The interaction of the antidepressant drug nortriptyline hydrochloride (NOT) with the surface-active ionic liquid (SAIL), 1-decyl-3-methylimidazolium chloride, [C10mim][Cl], has been studied using multiple techniques, including conductometric titration, tensiometric, fluorometric, dynamic light scattering and UV–visible spectrophotometric measurements. There is a significant decrease in the cmc of SAIL on the addition of the drug NOT, indicating adsorption of drug molecules in the outer portion of the micelle. In the present study, the values of the packing parameter, P, lie in the range of 0–0.3, which suggests that the micelles formed are spherical in nature. More negative values of the standard Gibbs energy of adsorption, \( \Delta G_{\text{ad}}^{ \circ } \), compared to \( \Delta G_{\text{m}}^{ \circ } \) support our contention that adsorption of SAIL on the air-solution interface is relatively more favorable than its micellization in the presence of NOT. Fluorescence and DLS studies indicate that the aggregation number, Nagg, and hydrodynamic radius of SAIL increase with increase in concentration of NOT. The UV–visible spectroscopic study confirms the formation of a new complex between SAIL and NOT; this is also supported by the negative Gibbs energy of complexation.


1-Decyl-3-methylimidazolium chloride Nortriptyline hydrochloride Mixtures Interactions 



Ummer Farooq is thankful to the UGC (University Grants Commission), Government of India, for providing a scholarship in the form of BSR (Basic Scientific Research).


  1. 1.
    Mahajan, S., Sharma, R., Mahajan, R.K.: An investigation of drug binding ability of a surface active ionic liquid: Micellization, electrochemical, and spectroscopic studies. Langmuir 28, 17238–17246 (2012)CrossRefGoogle Scholar
  2. 2.
    Earle, M.J., Esperanca, J.M.S.S., Gilea, M.A., Canongia Lopes, J.N., Rebelo, L.P.N., Magee, J.W., Seddon, K.R., Widegren, J.A.: The distillation and volatility of ionic liquids. Nature 439, 831–834 (2006)CrossRefGoogle Scholar
  3. 3.
    Luczak, J., Jungnickel, C., Lacka, I., Stolte, S., Hupka, J.: Antimicrobial and surface activity of 1-alkyl-3-methylimidazolium derivatives. Green Chem. 12, 593–601 (2010)CrossRefGoogle Scholar
  4. 4.
    Zafarani-Moattar, M.T., Shekaari, H., Mazaher, E.: Effect of ionic liquids, 1-butyl-3-methyl imidazolium bromide and 1-hexyl-3-methyl imidazolium bromide on the vapour-liquid equilibria of the aqueous d-fructose solutions at 298.15 K and atmospheric pressure using isopiestic method. J. Chem. Thermodyn. 93, 142–150 (2017)CrossRefGoogle Scholar
  5. 5.
    Behera, K., Om, H., Pandey, S.: Modifying properties of aqueous cetyltrimethylammonium bromide with external additives: Ionic liquid 1-hexyl-3-methylimidazolium bromide versus cosurfactant n-hexyltrimethylammonium bromide. J. Phys. Chem. B 113, 786–793 (2009)CrossRefGoogle Scholar
  6. 6.
    Tourne-Peteith, C., Coasne, B., In, M., Brevet, D., Devoisselle, J.M., Vioux, A., Viau, L.: Surfactant behavior of ionic liquids involving a drug: from molecular interactions to self-assembly. Langmuir 30, 1229–1238 (2014)CrossRefGoogle Scholar
  7. 7.
    Galgano, P.D., El Seoud, O.A.: Micellar properties of surface active ionic liquids: a comparison of 1-hexadecyl-3-methylimidazolium chloride with structurally related cationic surfactants. J. Colloid Interface Sci. 345, 1–11 (2010)CrossRefGoogle Scholar
  8. 8.
    Khan, A.B., Ali, M., Malik, N.A., Ali, A., Patel, R.: Role of 1-methyl-3-octylimidazolium chloride in the micellization behavior of amphiphilic drug amitriptyline hydrochloride. Colloids Surf. B 112, 460–465 (2013)CrossRefGoogle Scholar
  9. 9.
    Lipinski, C.A.: Poor aqueous solubility—an industry wide problem in drug delivery. Am. Pharm. Res. 19, 1894–1900 (2002)CrossRefGoogle Scholar
  10. 10.
    Bhat, P.A., Dar, A.A., Rather, G.M.: Solubilization capabilities of some cationic, anionic, and nonionic surfactants toward the poorly water-soluble antibiotic drug erythromycin. J. Chem. Eng. Data 53, 1271–1277 (2008)CrossRefGoogle Scholar
  11. 11.
    Myers, D.: Surfactant Science and Technology. Wiley-Interscience, Hoboken (2006)Google Scholar
  12. 12.
    Gao, Z., Lukyanov, A.N., Singhal, A., Torchilin, V.P.: Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano Lett. 2, 979–982 (2002)CrossRefGoogle Scholar
  13. 13.
    Lawrence, M.J.: Surfactant systems: their use in drug delivery. Chem. Soc. Rev. 23, 417–424 (1994)CrossRefGoogle Scholar
  14. 14.
    Torchilin, V.P.: Structure and design of polymeric surfactant-based drug delivery systems. J. Controlled Release 73, 137–172 (2001)CrossRefGoogle Scholar
  15. 15.
    Barnes, G.T., Gentle, I.R.: Interfacial Science: An Introduction. Oxford University Press Inc, New York (2005)Google Scholar
  16. 16.
    Matrgesin, R., Schinner, F.: Oil biodegradation potential in Alpine habitat. Int. Biodeterior. Biodegrad. 30, 262–265 (1998)Google Scholar
  17. 17.
    Hrenovic, J., Ivankovic, T.: Toxicity of anionic and cationic surfactant to Acinetobacter junii in pure culture. Central Eur. J. Biol. 2, 405–414 (2007)Google Scholar
  18. 18.
    Massey, J.A., Winnik, M.A., Manners, I., Chan, V.Z.H., Ostermann, J.M., Enchelmaier, R., Spatz, J.P., Moller, M.: Fabrication of oriented nanoscopic ceramic lines from cylindrical micelles of an organometallic polyferrocene block copolymer. J. Am. Chem. Soc. 123, 3147–3148 (2001)CrossRefGoogle Scholar
  19. 19.
    Savic, R., Luo, L.B., Eisenberg, A., Maysinger, D.: Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300, 615–618 (2003)CrossRefGoogle Scholar
  20. 20.
    Alexandridis, P., Lindman, B. (eds.): Amphiphilic Block Copolymers: Self-assembly and Applications. Elsevier, Amsterdam (2000)Google Scholar
  21. 21.
    Luczak, J., Jungnickel, C., Markiewiz, M., Hupka, J.: Solubilization of benzene, toluene, and xylene (BTX) in aqueous micellar solutions of amphiphilic imidazolium ionic liquids. J. Phys. Chem. B 117, 5653–5658 (2013)CrossRefGoogle Scholar
  22. 22.
    Singh, T., Kumar, A.: Aggregation behavior of ionic liquids in aqueous solutions: effect of alkyl chain length, cations, and anions. J. Phys. Chem. B 111, 7843–7851 (2007)CrossRefGoogle Scholar
  23. 23.
    Chabba, S., Kumar, S., Aswal, V.K.T., Kang, S., Mahajan, R.K.: Interfacial and aggregation behavior of aqueous mixtures of imidazolium based surface active ionic liquids and anionic surfactant sodium dodecylbenzenesulfonate. Colloids Surf. A 472, 9–20 (2015)CrossRefGoogle Scholar
  24. 24.
    Khan, A.B., Ali, M., Dohare, N., Singh, P., Patel, R.: Micellization behavior of the amphiphilic drug promethazine hydrochloride with 1-decyl-3-methylimidazolium chloride and its thermodynamic characteristics. J. Mol. Liq. 198, 341–346 (2014)CrossRefGoogle Scholar
  25. 25.
    Lawrence, M.J., Rees, G.D.: Microemulsion-based media as novel drug delivery systems. Adv. Drug Delivery Rev. 45, 89–121 (2000)CrossRefGoogle Scholar
  26. 26.
    Okochi, H., Nakano, M.: Preparation and evaluation of w/o/w type emulsions containing vancomycin. Adv. Drug Delivery Rev. 45, 5–26 (2000)CrossRefGoogle Scholar
  27. 27.
    Florence, A.T., Hussain, N.: Transcytosis of nanoparticle and dendrimer delivery systems: evolving vistas. Adv. Drug Delivery Rev. 50, 69–89 (2001)CrossRefGoogle Scholar
  28. 28.
    Al-Ahmadi, M.D.A., Naqvi, A.Z., Akram, M.: Conductometric study of antidepressant drug–cationic surfactant mixed micelles in aqueous solution. Colloids Surf. B 64, 65–69 (2008)CrossRefGoogle Scholar
  29. 29.
    Sharma, R., Nandni, D., Mahajan, R.K.: Interfacial and micellar properties of mixed systems of tricyclic antidepressant drugs with polyoxyethylene alkyl ether surfactants. Colloids Surf. A 451, 107–116 (2014)CrossRefGoogle Scholar
  30. 30.
    Tripathi, K.D.: Essentials of Medical Pharmacology, 4th edn. Jaypee Brothers, Medical Publishers (P) Ltd, New Delhi (1999)Google Scholar
  31. 31.
    Padday, J.F., Pitt, A.R., Pashley, R.M.: Menisci at a free liquid surface: surface tension from the maximum pull on a rod. J. Chem. Soc. Faraday Trans. 1(71), 1919–1931 (1975)CrossRefGoogle Scholar
  32. 32.
    Farooq, U., Ali, A., Patel, R., Malik, N.A.: Self-aggregation of ionic liquid-cationic surfactant mixed micelles in water and in diethylene glycol–water mixtures: conductometric, tensiometric, and spectroscopic studies. J. Mol. Liq. 234, 452–462 (2017)CrossRefGoogle Scholar
  33. 33.
    Ali, A., Uzair, S., Farooq, U., Ali, M.: Effect of tartrazine dye on micellization of cationic surfactants: conductometric, spectrophotometric, and tensiometric studies. Color. Technol. 132, 376–386 (2016)CrossRefGoogle Scholar
  34. 34.
    Pethybridge, A.D., Talbat, J.D.R., House, W.A.: Precise conductance measurements on dilute aqueous solutions of sodium and potassium hydrogenphosphate and dihydrogenphosphate. J. Solution Chem. 35, 381–393 (2006)CrossRefGoogle Scholar
  35. 35.
    Rosen, M.J.: Surfactants and Interfacial Phenomena, 3rd edn. Willey-Interscience, New York (2004)CrossRefGoogle Scholar
  36. 36.
    Moroi, Y.: Micelles: Theoretical and Applied Aspects. Plenum Press, New York (1992)CrossRefGoogle Scholar
  37. 37.
    Evans, D.F., Wennerstrom, H.: The Colloidal Domain, Where Physics, Chemistry, Biology, and Technology Meet, 2nd edn. Wiley-VCH, New York (1999)Google Scholar
  38. 38.
    Bazito, R.C., El Seoud, O.A.: Sugar-based surfactants: adsorption and micelle formation of sodium methyl 2-acylamido-2-deoxy-6-O-sulfo-d-glucopyranosides. Langmuir 18, 4362–4366 (2002)CrossRefGoogle Scholar
  39. 39.
    El-Dossoki, F.I.: Micellization thermodynamics of some imidazolium ionic liquids in aqueous solutions—conductometric study. J. Solution Chem. 42, 125–135 (2013)CrossRefGoogle Scholar
  40. 40.
    Frahm, J., Diekmann, S., Haase, A.: Electrostatic properties of ionic micelles in aqueous solutions. Ber. Bunsenge. Phys. Chem. 84, 566–571 (1980)CrossRefGoogle Scholar
  41. 41.
    Evans, H.: Alkyl sulphates. Part I. Critical micelle concentrations of the sodium salts. J. Chem. Soc. 78, 579–586 (1956)CrossRefGoogle Scholar
  42. 42.
    Luczak, J., Jungnickel, C., Joskowska, M., Thoming, J., Hupka, J.: Thermodynamics of micellization of imidazolium ionic liquids in aqueous solutions. J. Colloid Interface Sci. 336, 111–116 (2009)CrossRefGoogle Scholar
  43. 43.
    Okano, T., Tamura, T., Nanako, T., Ueda, S., Lee, S., Sugihara, G.: Effects of side chain length and degree of counterion binding on micellization of sodium salts of α-myristic acid alkyl esters in water: a thermodynamic study. Langmuir 16, 3777–3783 (2000)CrossRefGoogle Scholar
  44. 44.
    Gorski, N., Kalus, J.: Temperature dependence of the sizes of tetradecyltrimethylammonium bromide micelles in aqueous solutions. Langmuir 17, 4211–4215 (2001)CrossRefGoogle Scholar
  45. 45.
    Barbosa, L.R.S., Caetano, W., Itri, R., Homemde Mello, P., Santiago, P.S., Tabak, M.: Interaction of phenothiazine compounds with zwitterionic lysophosphatidylcholine micelles: small angle X-ray scattering, electronic absorption spectroscopy, and theoretical calculations. J. Phys. Chem. B 110, 13086–13093 (2006)CrossRefGoogle Scholar
  46. 46.
    Anand, K., Yadav, O.P.P., Singh, P.: Studies on the surface and thermodynamic properties of some surfactants in aqueous and water + 1,4-dioxane solutions. Colloids Surf. 55, 345–358 (1991)CrossRefGoogle Scholar
  47. 47.
    Farooq, U., Ali, A., Patel, R., Malik, N.A.: Interaction between amphiphilic antidepressant drug nortryptyline hydrochloride and conventional cationic surfactants: a physicochemical study. J. Mol. Liq. 233, 310–318 (2017)CrossRefGoogle Scholar
  48. 48.
    Rub, M.A., Azum, N., Asiri, A.M.: Interaction of cationic amphiphilic drug nortryptyline hydrochloride with TX-100 in aqueous and urea solutions and the studies of physicochemical parameters of the mixed micelles. J. Mol. Liq. 218, 595–603 (2016)CrossRefGoogle Scholar
  49. 49.
    Mukherjee, S., Mitra, D., Bhattacharya, S.C., Panda, A.K., Moulik, S.P.: Physicochemical studies on the micellization behavior of cetylpyridinium chloride and triton X-100 binary mixtures in aqueous medium. Colloid J. 71, 677–686 (2009)CrossRefGoogle Scholar
  50. 50.
    Ali, A., Farooq, U., Uzair, S., Patel, R.: Conductometric and tensiometric studies on the mixed micellar systems of surface-active ionic liquid and cationic surfactants in aqueous medium. J. Mol. Liq. 223, 589–602 (2016)CrossRefGoogle Scholar
  51. 51.
    Sulthana, S.B., Rao, P.V.C., Bhat, S.G.T., Rakshit, A.K.: Interfacial and thermodynamic properties of SDBS–C12E10 mixed micelles in aqueous media: effect of additives. J. Phys. Chem. B 102, 9653–9660 (1998)CrossRefGoogle Scholar
  52. 52.
    Chakraborty, T., Ghosh, S., Moulik, S.P.: Micellization and related behavior of binary and ternary surfactant mixtures in aqueous medium: cetyl pyridinium chloride (CPC), cetyl trimethyl ammonium bromide (CTAB), and polyoxyethylene (10) cetyl ether (Brij-56) derived system. J. Phys. Chem. B 109, 14813–14823 (2005)CrossRefGoogle Scholar
  53. 53.
    Bai, G., Lopes, A., Bastos, M.: Thermodynamics of micellization of alkylimidazolium surfactants in aqueous solution. J. Chem. Thermodyn. 40, 1509–1516 (2008)CrossRefGoogle Scholar
  54. 54.
    Zheng, L., Guo, C., Wang, J., Liang, X., Chen, S., Ma, J., Yang, B., Jiang, Y., Liu, H.: Effect of ionic liquids on the aggregation behavior of PEO-PPO-PEO block copolymers in aqueous solution. J. Phys. Chem. B 111, 1327–1333 (2007)CrossRefGoogle Scholar
  55. 55.
    Gohain, B., Saikia, P.M., Sarma, S., Bhat, S.N., Dutta, R.K.: Hydrophobicity-induced deprotonation of dye in dye-submicellar surfactant systems. Phys. Chem. Chem. Phys. 4, 2617–2620 (2002)CrossRefGoogle Scholar
  56. 56.
    Dutta, R.K., Bhat, S.N.: Interaction of phenazinium dyes and methyl orange with micelles of various charge types. Colloids Surf. A 106, 127–134 (1996)CrossRefGoogle Scholar
  57. 57.
    Uzair, S., Farooq, U., Bidhurib, P., Ali, A.: Interaction of cresol red dye with some basic amino acids under different pH conditions. J. Chin. Chem. Soc. (2017). Google Scholar
  58. 58.
    Mukhopadhyay, M., Varma, C.S., Bhowmik, B.B.: Spectrophotometric and thermodynamic studies of micellar interaction of surfactants with p-Nitrophenol. Colloid Polym. Sci. 268, 447–451 (1990)CrossRefGoogle Scholar
  59. 59.
    Ghanadzadeh, A., Zeini, A., Kashef, A.: Environment effect on the electronic absorption spectra of crystal violet. J. Mol. Liq. 133, 61–67 (2007)CrossRefGoogle Scholar
  60. 60.
    Shiraishi, Y., Sumiya, S., Kohno, Y., Hirai, T.: Cyclen conjugate as a highly sensitive and selective fluorescent chemosensor for Hg(II). J. Org. Chem. 73, 8571–8574 (2008)CrossRefGoogle Scholar
  61. 61.
    Paul, B.K., Samanta, A., Guchhait, N.: Exploring hydrophobic subdomain IIA of the protein bovine serum albumin in the native, intermediate, unfolded, and refolded states by a small fluorescence molecular reporter. J. Phys. Chem. B 114, 6183–6196 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryJamia Millia Islamia (Central University)New DelhiIndia
  2. 2.Centre for Interdisciplinary Research in Basic SciencesJamia Millia Islamia (Central University)New DelhiIndia

Personalised recommendations