Journal of Solution Chemistry

, Volume 47, Issue 3, pp 511–527 | Cite as

Additional Aspects of Complexation of Gold(I) with Thiomalate

  • Igor V. Mironov
  • Viktoria Yu. Kharlamova


Some equilibria involving gold(I) thiomalate (mercaptosuccinate, TM) complexes have been studied in the aqueous solution at 25 °C and I = 0.2 mol·L−1 (NaCl). In the acidic region, the oxidation of TM by \( {\text{AuCl}}_{4}^{ - } \) proceeds with the formation of sulfinic acid, and gold(III) is reduced to gold(I). The interaction of gold(I) with TM at nTM/nAu ≤ 1 leads to the formation of highly stable cyclic polymeric complexes \( {\text{Au}}_{m} \left( {\text{TM}} \right)_{m}^{*} \) with various degrees of protonation depending on pH. In general, the results agree with the tetrameric form of this complex proposed in the literature. At nTM/nAu > 1, the processes of opening the cyclic structure, depolymerization and the formation of \( {\text{Au}}\left( {\text{TM}} \right)_{2}^{*} \) occur: \( {\text{Au}}_{4} ( {\text{TM)}}_{4}^{8 - } + {\text{TM}}^{3 - } \rightleftharpoons {\text{Au}}_{ 4} ( {\text{TM)}}_{5}^{11 - } \), log10 K45 = 10.1 ± 0.5; 0.25 \( {\text{Au}}_{4} ( {\text{TM)}}_{4}^{8 - } + {\text{TM}}^{3 - } \rightleftharpoons {\text{Au(TM)}}_{2}^{5 - } \), log10 K12 = 4.9 ± 0.2. The standard potential of \( {\text{Au(TM)}}_{2}^{5 - } \) is \( E_{1/0}^{ \circ } = -0. 2 5 5\pm 0.0 30{\text{ V}} \). The numerous protonation processes of complexes at pH < 7 were described with the use of effective functions.


Thiomalate Complexes of gold(I) Polymeric complexes Protonated complexes 


  1. 1.
    Shaw III, C.F.: Gold-based therapeutic agents. Chem. Rev. 99, 2589–2600 (1999)CrossRefGoogle Scholar
  2. 2.
    Smith, W.E., Reglinski, J.: Distribution and reactivity of myocrisin. Met. Based Drugs 1, 497–507 (1994)CrossRefGoogle Scholar
  3. 3.
    Brown, D.H., Smith, W.E.: The chemistry of the gold drugs used in the treatment of rheumatoid arthritis. J. Chem. Soc. Dalton Trans. 9, 217–240 (1980)Google Scholar
  4. 4.
    Howard-Lock, H.E.: Structures of gold(I) and silver(I) thiolate complexes of medicinal interest: a review and recent results. Met. Based Drugs 6, 201–209 (1999)CrossRefGoogle Scholar
  5. 5.
    Lewis, G., Shaw III, C.F.: Competition of thiols and cyanide for gold(I). Inorg. Chem. 25, 58–62 (1986)CrossRefGoogle Scholar
  6. 6.
    Elder, R.C., Jones, W.B., Zhao, Z., Dorsey, J.G., Tepperman, K.: Myochrysine solution structure and reactivity. Met. Based Drugs 1, 363–374 (1994)CrossRefGoogle Scholar
  7. 7.
    Mironov, I.V., Kharlamova, VYu.: Properties of the gold(I) sulfite complex in acidic chloride solutions. Russ. J. Inorg. Chem. 61, 1047–1053 (2016)CrossRefGoogle Scholar
  8. 8.
    Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolytic Solutions. Reinhold, New York (1950)Google Scholar
  9. 9.
    Dobos, D.: Electrochemical Data. Akademiai Kiado, Budapest (1975)Google Scholar
  10. 10.
    Mironov, I.V., Makotchenko, E.V.: The hydrolysis of AuCl4 and the stability of aquachlorohydroxo complexes of gold(III) in aqueous solution. J. Solution Chem. 38, 725–737 (2009)CrossRefGoogle Scholar
  11. 11.
    Nomiya, K., Yokoyama, H., Nagano, H., Oda, M., Sakuma, S.: Synthesis and characterization of highly pure form of sodium salt of anionic, thiomalatogold(I) complex with antiarthritic activity. Analogs of anionic, thiomalatosilver(I) complex with antimicrobial activity. Bull. Chem. Soc. Jpn 68, 2875–2883 (1995)CrossRefGoogle Scholar
  12. 12.
    Bau, R.: Crystal structure of the antiarthritic drug gold thiomalate (myochrysine): a double-helical geometry in the solid state. J. Am. Chem. Soc. 120, 9380–9381 (1998)CrossRefGoogle Scholar
  13. 13.
    Isab, A.A., Sadler, P.J.: Hydrogen-1 and carbon-13 nuclear magnetic resonance studies of gold (I) thiomalate (‘myocrisin’) in aqueous solution: dependence of the solution structure on pH and ionic strength. Dalton Trans. 7, 1657–1663 (1981)CrossRefGoogle Scholar
  14. 14.
    Grootveld, M.C., Razi, M.T., Sadler, P.J.: Progress in the characterization of gold drugs. Clin. Rheumatol. 3, 5–16 (1984)CrossRefGoogle Scholar
  15. 15.
    Howard-Lock, H.E., LeBlanc, D.J., Lock, C.J.L., Smith, R.W., Wang, Z.: Concerning the nature of the gold-containing anti-arthritic drug, myochrysine. Chem. Commun. 11, 1391–1392 (1996)CrossRefGoogle Scholar
  16. 16.
    Darabi, F., Marzo, T., Massai, L., Scaletti, F., Michelucci, E., Messori, L.: Reactions of model proteins with aurothiomalate, a clinically established gold(I) drug: the comparison with auranofin. J. Inorg. Biochem. 149, 102–107 (2015)CrossRefGoogle Scholar
  17. 17.
    LeBlanc, D.J., Smith, R.W., Wang, Z., Howard-Lock, H.E., Lock, C.J.L.: Thiomalate complexes of gold(I): preparation, characterization and crystal structures of 1:2 gold to thiomalate complexes. J. Chem. Soc. Dalton Trans. 18, 3263–3267 (1997)CrossRefGoogle Scholar
  18. 18.
    Gammons, C.H., Yunmei, Y., Williams-Jones, A.E.: The disproportionation of gold(I) chloride complexes at 25 to 200 °C. Geochim. Cosmochim. Acta 61, 1971–1983 (1997)CrossRefGoogle Scholar
  19. 19.
    Brown, D.H., Paton, M., Smith, W.E.: The effect of solvent on the reaction of sodium tetrachloroaurate and 2-mercaptosuccinic acid. Inorg. Chim. Acta 66, L51–L52 (1982)CrossRefGoogle Scholar
  20. 20.
    Corthey, G., Giovanetti, L.J., Ramallo-Lopez, J.M., Zelaya, E., Rubert, A.A., Benitez, G.A., Requejo, F.G., Fonticelli, M.H., Salvarezza, R.C.: Synthesis and characterization of gold@gold(I)–thiomalate core@shell nanoparticles. ACS Nano 4, 3413–3421 (2010)CrossRefGoogle Scholar
  21. 21.
    Vasilev, K., Zhu, T., Glasser, G.: Preparation of gold nanoparticles in an aqueous medium using 2-mercaptosuccinic acid as both reduction and capping agent. J. Nanosci. Nanotech. 8, 2062–2068 (2008)CrossRefGoogle Scholar
  22. 22.
    Bard, A.J., Parsons, R., Jordan, J. (eds.): Standard Potentials in Aqueous Solutions. IUPAC, Marcel Dekker, Inc., New York (1985)Google Scholar
  23. 23.
    Hynes, M., O’Dowd, M.: Interaction of the trimethyltin(IV) cation with carboxylic acids, amino acids, and related ligands. J. Chem. Soc. Dalton Trans. 3, 563–566 (1987)CrossRefGoogle Scholar
  24. 24.
    Mironov, I.V., Kalnii, D.B., Kokovkin, V.V.: On gold(I) complexes and gold anodic dissolution in the sulfite–thiourea solutions. J. Solution Chem. 46, 989–1003 (2017)CrossRefGoogle Scholar
  25. 25.
    Belevantsev, V.I., Peshchevitskii, B.I., Tsvelodub, L.D.: Thiourea gold(I) complexes in aqueous-solutions. Russ. J. Inorg. Chem. 31, 1762–1763 (1986)Google Scholar
  26. 26.
    Belevantsev, V.I., Peshchevitskii, B.I., Tsvelodub, L.D.: Thermodynamic characteristics of some gold cyano-complexes in aqueous-solutions. Russ. J. Inorg. Chem. 32, 108–112 (1987)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nikolaev Institute of Inorganic ChemistrySiberian Branch of RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations