Skip to main content
Log in

Thermodynamic Study on the Protonation and Na+, Ca2+, Mg2+-Complexation of a Biodegradable Chelant (HEIDA) at Different Ionic Strengths and Temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A potentiometric method has been used for the determination of the protonation constants of N-(2-hydroxyethyl)iminodiacetic acid (HEIDA or L) at various temperatures 283.15 ≤ T/K ≤ 383.15 and different ionic strengths of NaCl(aq), 0.12 ≤ I/mol·kg−1 ≤ 4.84. Ionic strength dependence parameters were calculated using a Debye–Hückel type equation, Specific Ion Interaction Theory and Pitzer equations. Protonation constants at infinite dilution calculated by the SIT model are \( \log_{10} \left( {{}^{T}K_{1}^{\text{H}} } \right) = 8.998 \pm 0.008 \) (amino group), \( \log_{10} \left( {{}^{T}K_{2}^{\text{H}} } \right) = 2.515 \pm 0.009 \) and \( \log_{10} \left( {{}^{T}K_{3}^{\text{H}} } \right) = 1.06 \pm 0.002 \) (carboxylic groups). The formation constants of HEIDA complexes with sodium, calcium and magnesium were determined. In the first case, the formation of a weak complex species, NaL, was found and the stability constant value at infinite dilution is log10KNaL = 0.78 ± 0.23. For Ca2+ and Mg2+, the CaL, CaHL, CaL2 and MgL species were found, respectively. The calculated stability constants for the calcium complexes at T = 298.15 K and I = 0.150 mol·dm−3 are: log10βCaL = 4.92 ± 0.01, log10βCaHL = 11.11 ± 0.02 and \( \log_{10} \beta_{\text{Ca{L}}_{2}} \) = 7.84 ± 0.03, while for the magnesium complex (at I = 0.176 mol·dm−3): log10βMgL = 2.928 ± 0.006. Protonation thermodynamic functions have also been calculated and interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dissolvine Chelates Product Guide. Akzo Nobel Functional Chemicals B.V., Amsterdam (2015)

  2. Lynn, J.B., Fries, C.E., Homberg, O.A.: Studies on detergent phosphate replacements. 1. Aerobic biodegradation of sodium 2-hydroxyethyliminodiacetate. J. Am. Oil Chem. Soc. 52, 41–43 (1975)

    Article  CAS  Google Scholar 

  3. Crump, D.K., Wilson, D.A.: Formulations with unexpected cleaning performance incorporating a biodegradable chelant. United States Patent, US20110281784 (2011)

  4. Giles, M.R., Dixon, N.J.: Automatic dishwashing composition. International Patent, WO2012038755 (2012)

  5. Mahmoud, M., Elkatatny, S., Abdelgawad, K.Z.: Using high- and low-salinity seawater injection to maintain the oil reservoir pressure without damage. J. Petrol. Explor. Prod. Technol. 7, 589–596 (2017)

    Article  CAS  Google Scholar 

  6. Frihauf, J., Brommer, C., Bowe, S., Oliver, G.W.: Methods for improving the efficacy of anionic herbicides under hard water conditions and suitable compositions. PCT Int. Appl., WO 2014206835 A1 20141231 (2014)

  7. McGillicuddy, N., Nesterenko, E.P., Nesterenko, P.N., Stack, E.M., Omamogho, J.O., Glennon, J.D., Paull, B.: A new N-hydroxyethyliminodiacetic acid modified core-shell silica phase for chelation ion chromatography of alkaline earth, transition and rare earth elements. J. Chromatogr. A 1321, 56–64 (2013)

    Article  CAS  Google Scholar 

  8. McGillicuddy, N., Nesterenko, E.P., Nesterenko, P.N., Jones, P., Paull, B.: Chelation ion chromatography of alkaline earth and transition metals a using monolithic silica column with bonded N-hydroxyethyliminodiacetic acid functional groups. J. Chromatogr. A 1276, 102–111 (2013)

    Article  CAS  Google Scholar 

  9. McGillicuddy, N., Nesterenko, E.P., Jones, P., Caldarola, D., Onida, B., Townsend, A.T., Mitev, D.P., Nesterenko, P.N., Paull, B.: Direct determination of transition metals in mussel tissue digests using high-performance chelation ion chromatography with monolithic silica based chelating ion exchangers. Anal. Meth. 5, 2666–2673 (2013)

    Article  CAS  Google Scholar 

  10. Kutolei, D.A., Shtemenko, A.V.: Heteroligand copper(II) complexes with hydroxyethyleneiminodiacetic acid and bidentate nitrogen containing ligands: structures and properties. Russ. J. Coord. Chem. 39, 857–866 (2013)

    Article  CAS  Google Scholar 

  11. Li, L., Nasr-El-Din, H.A., Crews, J.B., Cawiezel, K.E.: Impact of organic acids/chelating agents on the rheological properties of an amidoamine-oxide surfactant. SPE Product. Operat. 26, 30–40 (2011)

    Article  CAS  Google Scholar 

  12. McLaren, K.P., Drozd, J.C., Renn, G.: Alkaline compositions for use in laundry industry and methods of producing same. U.S. Pat. Appl. Publ., US 20100204082 A1 20100812 (2010)

  13. Wen, J., Zhao, K., Gu, T., Raad, I.: Chelators enhanced biocide inhibition of planktonic sulfate-reducing bacterial growth. World J. Microbiol. Biotechnol. 26, 1053–1057 (2010)

    Article  CAS  Google Scholar 

  14. Desthomas, G.: Electrolyte and method for electrolytic deposition of gold–copper alloys. Eur. Pat. Appl. EP 1983077 A1 20081022 (2008)

  15. Nancollas, G.H., Park, A.C.: Proton magnetic resonance studies on some metal complexes of methyliminodiacetic acid and (hydroxyethyl)-iminodiacetic acid. J. Phys. Chem. 71, 3678–3681 (1967)

    Article  CAS  Google Scholar 

  16. Szakacs, Z., Beni, S., Noszal, B.: Resolution of carboxylate protonation microequilibria of NTA, EDTA and related complexones. Talanta 74, 666–674 (2008)

    Article  CAS  Google Scholar 

  17. Letkeman, P., Martell, A.E.: Nuclear magnetic resonance and potentiometric protonation study of polyaminopolyacetic acids containing from two to six nitrogen atoms. Inorg. Chem. 18, 1284–1289 (1979)

    Article  CAS  Google Scholar 

  18. Martell, A.E., Smith, R.M., Motekaitis, R.J.: NIST Critically selected stability constants of metal complexes database, 8.0. Garthersburg, MD (2004)

  19. Bretti, C., Cigala, R.M., De Stefano, C., Lando, G., Sammartano, S.: Thermodynamic solution properties of a biodegradable chelant (MGDA) and its interaction with the major constituents of natural fluids. Fluid Phase Equilib. 434, 63–73 (2017)

    Article  CAS  Google Scholar 

  20. Bretti, C., Cigala, R.M., De Stefano, C., Lando, G., Sammartano, S.: Understanding the bioavailability and sequestration of different metal cations in the presence of a biodegradable chelant S, S-EDDS in biological fluids and natural waters. Chemosphere 150, 341–356 (2016)

    Article  CAS  Google Scholar 

  21. Bretti, C., Majlesi, K., De Stefano, C., Sammartano, S.: Thermodynamic study on the protonation and complexation of GLDA with Ca2+ and Mg2+ at different ionic strengths and ionic media at 298.15 K. J. Chem. Eng. Data 61, 1895–1903 (2016)

    Article  CAS  Google Scholar 

  22. De Stefano, C., Sammartano, S., Mineo, P., Rigano, C.: In: Gianguzza, A., Pelizzetti, E., Sammartano, S. (eds.) Computer Tools for the Speciation of Natural Fluids. In Marine Chemistry—An Environmental Analytical Chemistry Approach, pp. 71–83. Kluwer Academic Publishers, Amsterdam (1997)

    Google Scholar 

  23. De Robertis, A., De Stefano, C., Sammartano, S., Rigano, C.: The determination of formation constants of weak complexes by potentiometric measurements: experimental procedures and calculation methods. Talanta 34, 933–938 (1987)

    Article  Google Scholar 

  24. Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolytic Solutions, 3rd edn. Reinhold Publishing Corporation, New York (1964)

    Google Scholar 

  25. Ciavatta, L.: The specific interaction theory in equilibrium analysis. Some empirical rules for estimating interaction coefficients of metal ion complexes. Ann. Chim. 80, 255–263 (1990)

    CAS  Google Scholar 

  26. Scatchard, G.: Concentrated solutions of strong electrolytes. Chem. Rev. 19, 309–327 (1936)

    Article  CAS  Google Scholar 

  27. Bronsted, J.N.: Studies on solubility. IV. The principle of the specific interaction of ions. J. Am. Chem. Soc. 44, 877–898 (1922)

    Article  CAS  Google Scholar 

  28. Ciavatta, L.: The specific interaction theory in the evaluating ionic equilibria. Ann. Chim. 70, 551–562 (1980)

    CAS  Google Scholar 

  29. Guggenheim, E.A., Turgeon, J.C.: Specific interaction of ions. Trans. Fraraday Soc. 51, 747–761 (1955)

    Article  CAS  Google Scholar 

  30. Pitzer, K.S.: Activity coefficients in electrolyte solutions. J. Phys. Chem. 77, 268–277 (1973)

    Article  CAS  Google Scholar 

  31. Pitzer, K.S.: Activity Coefficients in Electrolyte Solutions, 2nd edn. CRC Press, Boca Raton (1991)

    Google Scholar 

  32. Bretti, C., Foti, C., Porcino, N., Sammartano, S.: SIT parameters for 1:1 electrolytes and correlation with Pitzer coefficients. J. Solution Chem. 35, 1401–1415 (2006)

    Article  CAS  Google Scholar 

  33. Bretti, C., Cigala, R.M., De Stefano, C., Lando, G., Sammartano, S.: Potentiometric determination of some solution thermodynamic parameters of three hydroxypyrone derivates. Int. J. Electrochem. Sci. 8, 10621–10649 (2013)

    CAS  Google Scholar 

  34. Bretti, C., De Stefano, C., Foti, C., Sammartano, S.: Acid–base properties, solubility, activity coefficients and Na+ ion pair formation of complexons in NaCl(aq) at different ionic strengths (0 ≤ I ≤ 4.8 mol L−1). J. Solution Chem. 42, 1452–1471 (2013)

    Article  CAS  Google Scholar 

  35. Daniele, P.G., De Robertis, A., De Stefano, C., Sammartano, S., Rigano, C.: On the possibility of determining the thermodynamic parameters for the formation of weak complexes using a simple model for the dependence on ionic strength of activity coefficients: Na+, K+, and Ca2+ complexes of low molecular weight ligands in aqueous solution. J. Chem. Soc., Dalton Trans. 11, 2353–2361 (1985)

    Article  Google Scholar 

  36. Daniele, P.G., Foti, C., Gianguzza, A., Prenesti, E., Sammartano, S.: Weak alkali and alkaline earth metal complexes of low molecular weight ligands in aqueous solution. Coord. Chem. Rev. 252, 1093–1107 (2008)

    Article  CAS  Google Scholar 

  37. Frausto da Silva, J.J.R., Williams, R.J.P.: The Biological Elements: The Inorganic Chemistry of Life. Clarendon Press, Oxford (1991)

    Google Scholar 

  38. Pinto, I.S.S., Neto, I.F.F., Soares, H.M.V.M.: Biodegradable chelating agents for industrial, domestic, and agricultural applications—a review. Environ. Sci. Pollut. Res. 21, 11893–11906 (2014)

    Article  CAS  Google Scholar 

  39. Schwarzenbach, G.: Die komplexometrische titration. Angew. Chem. 67, 415 (1955)

    Article  Google Scholar 

  40. Kolondyska, D.: The effect of the novel complexing agent in removal of heavy metal ions from waters and wastewaters. Chem. Eng. J. 165, 835–845 (2010)

    Article  Google Scholar 

  41. BASF Technical Information; Ti/EVD 1418 e-Trilon® M types (2007)

  42. Nippon Shokubai; Biodegradable chelating agent: HIDS (2017). http://www.shokubai.co.jp/en/products/functionality/hids.html

Download references

Acknowledgements

Kavosh Majlesi thanks the Islamic Azad University, Science and Research Branch, Tehran, Iran for financial support through Research Project No. 20332.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavosh Majlesi.

Additional information

Kavosh Majlesi and Kimia Majlesi dedicate this paper to their mother (Dr. Eshrat Moshiri) and to the memory of their father (Mehdi Majlesi).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majlesi, K., Bretti, C., Cigala, R.M. et al. Thermodynamic Study on the Protonation and Na+, Ca2+, Mg2+-Complexation of a Biodegradable Chelant (HEIDA) at Different Ionic Strengths and Temperatures. J Solution Chem 47, 528–543 (2018). https://doi.org/10.1007/s10953-018-0734-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0734-z

Keywords

Navigation