Skip to main content

Advertisement

Log in

New Ionic Liquid Based on the CMPO Pattern for the Sequential Extraction of U(VI), Am(III) and Eu(III)

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Extraction of U(VI), Eu(III) and Am(III) has been performed from acidic aqueous solutions (HNO3, HClO4) into the ionic liquid [C4mim][Tf2N] in which a new extracting task-specific ionic liquid, based on the CMPO unit {namely 1-[3-[2-(octylphenylphosphoryl)acetamido]propyl]-3-methyl-1H-imidazol-3-ium bis(trifluoromethane)sulfonamide, hereafter noted OctPh-CMPO-IL}, was dissolved at low concentration (0.01 mol·L−1). EXAFS and UV–Vis spectroscopy measurements were performed to characterize the extracted species. The extraction of U(VI) is more efficient than the extraction of trivalent Am and Eu using this TSIL, for both acids and their concentration range. We obtained evidence that the metal ions are extracted as a solvate (UO2(OctPh-CMPO-IL)3) by a cation exchange mechanism. Nitrate or perchlorate ions do not play a direct role in the extraction by being part of the extracted complexes, but the replacement of nitric acid for perchloric acid entails a drop in the selectivity between U and Eu. However, our TSIL allows a sequential separation of U(VI) and Eu/Am(III) using the same HNO3 concentration and same nature of the organic phase, just by changing the ligand concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Horwitz, E.P., Kalina, D.C., Diamond, H., Vandegrift, G.F., Schulz, W.W.: The Truex process: a process for the extraction of the transuranic elements from nitric acid in wastes utilizing modified Purex solvent. Solv. Extr. Ion Exch. 3, 75–109 (1985)

    Article  CAS  Google Scholar 

  2. Wasserscheid, P., Welton, T.: Ionic Liquids in Synthesis. Wiley, Weinheim (2003)

    Google Scholar 

  3. Bara, J.E., Camper, D.E., Gin, D.L., Noble, R.D.: Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture. Acc. Chem. Res. 43, 152–159 (2010)

    Article  CAS  PubMed  Google Scholar 

  4. Zhou, F., Liang, Y.M., Liu, W.M.: Ionic liquid lubricants: designed chemistry for engineering applications. Chem. Soc. Rev. 38, 2590–2599 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. Moniruzzaman, M., Nakashima, K., Kamiya, N., Goto, M.: Recent advances of enzymatic reactions in ionic liquids. Biochem. Eng. J. 48, 295–314 (2010)

    Article  CAS  Google Scholar 

  6. Kubisa, P.: Ionic liquids as solvents for polymerization processes—progress and challenges. Prog. Polym. Sci. 34, 1333–1347 (2009)

    Article  CAS  Google Scholar 

  7. Stoimenovski, J., Farlane, D.R.M., Bica, K., Rogers, R.D.: Crystalline vs. ionic liquid salt forms of active pharmaceutical ingredients: a position paper. Pharm. Res. 27, 521–526 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. Stojanovic, A., Keppler, B.K.: Ionic liquids as extracting agents for heavy metals. Sep. Sci. Technol. 47, 189–203 (2012)

    Article  CAS  Google Scholar 

  9. Takao, K., Bell, T.J., Ikeda, Y.: Actinide chemistry in ionic liquids. Inorg. Chem. 52, 3459–3472 (2013)

    Article  CAS  PubMed  Google Scholar 

  10. Billard, I.: Ionic liquids: new hopes for efficient lanthanide/actinide extraction and separation? In: Bünzli, J.C.G., Percharsky, V.K. (eds.) Handbook on the Physics and Chemistry of Rare Earths, vol. 43. Elsevier, Amsterdam (2013)

    Google Scholar 

  11. Dai, S., Ju, Y.H., Barnes, C.E.: Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids. J. Chem. Soc. Dalton Trans. 8, 1201–1202 (1999)

    Article  Google Scholar 

  12. Mancini, M.V., Spreti, N., Profio, P.D., Germani, R.: Understanding mercury extraction mechanism in ionic liquids. Sep. Purif. Technol. 116, 294–299 (2013)

    Article  CAS  Google Scholar 

  13. Papaiconomou, N., Cointeaux, L., Chainet, E., Lojoiu, C., Billard, I.: Chem. Select. 1, 3892–3900 (2016)

    CAS  Google Scholar 

  14. Dietz, M.L., Stepinski, D.C.: Anion concentration-dependent partitioning mechanism in the extraction of uranium into room-temperature ionic liquids. Talanta 75, 598–603 (2008)

    Article  CAS  PubMed  Google Scholar 

  15. Gaillard, C., Boltoeva, M., Billard, I., Georg, S., Mazan, V., Ouadi, A., Ternova, D., Hennig, C.: New insights in the extraction mechanism of uranium(VI) by TBP from nitric acid solution into ionic liquid. ChemPhysChem 16, 2653–2662 (2015)

    Article  CAS  PubMed  Google Scholar 

  16. Bell, J., Ikeda, Y.: The application of novel hydrophobic ionic liquids to the extraction of uranium(VI) from nitric acid medium and a determination of the uranyl complexes formed. Dalton Trans. 40, 10125–10130 (2011)

    Article  CAS  PubMed  Google Scholar 

  17. Rout, A., Venkatesan, K.A., Srinivasan, T.G., Vasudeva Rao, P.R.: Extraction of americium(III) from nitric acid medium by CMPO–TBP extractants in ionic liquid diluent. Radiochim. Acta 97, 719–725 (2009)

    Article  CAS  Google Scholar 

  18. Rout, A., Venkatesan, K.A., Srinivasan, T.G., Vasudeva Rao, P.R.: Extraction and third phase formation behavior of Eu(III) in CMPO–TBP extractants present in room temperature ionic liquid. Sep. Purif. Technol. 76, 238–243 (2011)

    Article  CAS  Google Scholar 

  19. Sun, T.-X., Shen, X.-H., Chen, Q.-D.: Investigation of selective extraction of UO 2+2 from aqueous solution by CMPO and TBP in ionic liquids. Acta Phys. Chim. Sin. 31, 32–38 (2015)

    CAS  Google Scholar 

  20. Holbrey, J.D., Turner, M.B., Reichert, W.M., Rogers, R.D.: New ionic liquids containing an appended hydroxyl functionality from the atom-efficient, one-pot reaction of 1-methylimidazole and acid with propylene oxide. Green Chem. 5, 731–736 (2003)

    Article  CAS  Google Scholar 

  21. Kogelnig, D., Stojanovic, A., Galanski, M., Groessl, M., Jirsa, F., Krachler, R., Keppler, B.K.: Greener synthesis of new ammonium ionic liquids and their potential as extracting agents. Tetrahedron Lett. 49, 2782–2785 (2008)

    Article  CAS  Google Scholar 

  22. Mudring, A.-V., Tang, S.: Ionic liquids for lanthanide and actinide chemistry. Eur. J. Inorg. Chem. 18, 2569–2581 (2010)

    Article  CAS  Google Scholar 

  23. Messadi, A., Mohamadou, A., Boudesocque, S., Dupont, L., Guillon, E.: Task-specific ionic liquid with coordinating anion for heavy metal ion extraction: cation exchange versus ion-pair extraction. Sep. Purif. Technol. 107, 172–178 (2013)

    Article  CAS  Google Scholar 

  24. Egorov, V.M., Djigailo, D.I., Momotenko, D.S., Cheryshov, D.V., Torocheshnikova, I.I., Sirnova, S.V., Pletnev, I.V.: Task-specific ionic liquid trioctylmethylammonium salicylate as extraction solvent for transition metal ions. Talanta 80, 1177–1182 (2010)

    Article  CAS  PubMed  Google Scholar 

  25. Meindersma, G.W., Sanchez, L.M.G., Hansmeier, A.R., Haan, A.B.D.: Application of task-specific ionic liquids for intensified separations. Monatsh. Chem. 138, 1125–1136 (2007)

    Article  CAS  Google Scholar 

  26. Ouadi, A., Klimchuk, O., Gaillard, C., Billard, I.: Solvent extraction of U(VI) by task specific ionic liquids bearing phosphoryl groups. Green Chem. 9, 1160–1162 (2007)

    Article  CAS  Google Scholar 

  27. Mohapatra, P., Kandwal, P., Iqbal, M., Huskens, J., Murali, M.S., Verboom, W.: A novel CMPO-functionalized task specific ionic liquid: synthesis, extraction and spectroscopic investigations of actinide and lanthanide complexes. Dalton Trans. 42, 4343–4347 (2013)

    Article  CAS  PubMed  Google Scholar 

  28. Turanov, A.N., Karandashev, V.K., Artyushin, O.I., Sharova, E.V.: Extraction of U(VI), Th(IV) and lanthanides(III) from nitric acid solutions with CMPO-functionalized ionic liquid in molecular diluents. Solv. Extr. Ion Exch. 33, 540–554 (2015)

    Article  CAS  Google Scholar 

  29. Billard, I., Gaillard, C.: Actinide and lanthanide speciation in imidazolium-based ionic liquids. Radiochim. Acta 97, 355–359 (2009)

    Article  CAS  Google Scholar 

  30. Guillaumont, R., Fanghanel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D.A., Rand, M.H.: Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium. Elsevier, Amsterdam (2003)

    Google Scholar 

  31. Gaillard, C., Mazan, V., Georg, S., Klimchuk, O., Sypula, M., Billard, I., Schurhammer, R., Wipff, G.: Acid extraction to a hydrophobic ionic liquid: the role of added tributylphosphate investigated by experiments and simulations. Phys. Chem. Chem. Phys. 14, 5187–5199 (2012)

    Article  CAS  PubMed  Google Scholar 

  32. Chaumont, A., Klimchuk, O., Gaillard, C., Billard, I., Ouadi, A., Hennig, C., Wipff, G.: Perrhenate complexation by uranyl in traditional solvents and ionic liquids: a joint molecular dynamics and spectroscopic study. J. Phys. Chem. B 116, 3205–3219 (2012)

    Article  CAS  PubMed  Google Scholar 

  33. Gaillard, C., Chaumont, A., Billard, I., Hennig, C., Ouadi, A., Georg, S., Wipff, G.: Competitive complexation of nitrates and chloride to uranyl in a room temperature ionic liquid. Inorg. Chem. 49, 6484–6494 (2010)

    Article  CAS  PubMed  Google Scholar 

  34. Georg, S., Billard, I., Ouadi, A., Gaillard, C., Petitjean, L., Picquet, M., Solov’ev, V.: Determination of successive complexation constants in an ionic liquid: complexation of UO 2+2 with NO 3 in C4-mimTf2N studied by UV–Vis spectroscopy. J. Phys. Chem. B 114, 4276–4282 (2010)

    Article  CAS  PubMed  Google Scholar 

  35. Ravel, B., Newville, M.: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005)

    Article  CAS  Google Scholar 

  36. Newville, M., Ravel, B., Haskel, D., Rehr, J.J., Stern, A., Yacoby, Y.: Analysis of multiple-scattering XAFS data using theoretical standards. Phys. B 208–209, 154–156 (1995)

    Article  Google Scholar 

  37. Rehr, J.J., Albers, R.C.: Theorical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72, 621–623 (2000)

    Article  CAS  Google Scholar 

  38. Mazan, V., Billard, I., Papaiconomou, N.: Experimental connections between aqueous aqueous and aqueous ionic liquid biphasic systems. RSC Adv. 4, 13371–13384 (2014)

    Article  CAS  Google Scholar 

  39. Bonnaffé-Moity, M., Ouadi, A., Mazan, V., Miroshnichenko, S., Ternova, D., Georg, S., Sypula, M., Gaillard, C., Billard, I.: Comparison of uranyl extraction mechanisms in ionic liquid by use of malonamide or malonamide-functionalized ionic liquid. Dalton Trans. 41, 7526–7536 (2012)

    Article  CAS  PubMed  Google Scholar 

  40. Giridhar, P., Venkatesan, K.A., Subramaniam, S., Srinivasan, T.G., Rao, P.R.V.: Extraction of uranium(VI) by 1.1 M tri-n-butyl/ionic liquid and the feasibility of recovery by direct electrodeposition from organic phase. J. Alloys Compd. 448, 104–108 (2008)

    Article  CAS  Google Scholar 

  41. Ouadi, A., Gadenne, B., Hesemann, P., Moreau, J.J.E., Billard, I., Gaillard, C., Mekki, S., Moutiers, G.: Task-specific ionic liquids bearing 2-hydroxybenzylamine units: synthesis and americium-extraction studies. Chem. Eur. J. 12, 3074–3081 (2006)

    Article  CAS  PubMed  Google Scholar 

  42. Cocalia, V.A., Jensen, M.P., Holbrey, J.D., Spear, S.K., Stepinski, D.C., Rogers, R.D.: Identical extraction behavior and coordination of trivalent or hexavalent f-element cations using ionic liquid and molecular solvents. Dalton Trans. (2005). https://doi.org/10.1039/B502016F

    Article  PubMed  Google Scholar 

  43. Chaiko, D.J., Fredrickson, D.R., Reichley-Yinger, L., Vandegrift, G.F.: Thermodynamic modeling of chemical equilibria in metal extraction. In: Fifth Symposium on Separation Science and Technology for Energy Applications. Knoxville, Tennessee, pp. 1435–1453 (1987)

  44. Gutowski, K.E., Broker, G.A., Willauer, H.D., Huddleston, J.G., Swatloski, R.P., Holbrey, J.D., Rogers, R.D.: Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J. Am. Chem. Soc. 125, 6632–6633 (2003)

    Article  CAS  PubMed  Google Scholar 

  45. Ternova, D., Boltoeva, M., Cointeaux, L., Gaillard, C., Kalchenko, V., Mazan, V., Miroshnichenko, S., Mohapatra, P.K., Ouadi, A., Papaiconomou, N., Petrova, M., Billard, I.: Dramatic changes in crossed solubilities of ions induced by ligand addition in the biphasic system D2O/DNO3//[C1C4mim][Tf2N]: a phenomenological study. J. Phys. Chem. B 120, 7502–7511 (2016)

    Article  CAS  PubMed  Google Scholar 

  46. Mathur, J.N., Murali, M.S., Natarajan, P.R.: Extraction of actinides and fission products by octyl(phenyl)-N,N-diisobutylcarbamoylmethyl-phosphine oxide from nitric acid media. Talanta 39, 493–496 (1992)

    Article  CAS  PubMed  Google Scholar 

  47. Schulz, W.W., Horwitz, E.P.: The Truex process and the management of liquid Tru Uwaste. Separ. Sci. Technol. 23, 1191–1210 (1988)

    Article  CAS  Google Scholar 

  48. Wu, Q., Sun, T., Meng, X., Chen, J., Xu, C.: Thermodynamic insight into solvation and complexation behavior of U(VI) in ionic liquid: binding of CMPO with U(VI) studied by optical spectroscopy and calorimetry. Inorg. Chem. 56, 3014–3021 (2017)

    Article  CAS  PubMed  Google Scholar 

  49. Sémon, L., Boehme, C., Billard, I., Hennig, C., Lützenkirchen, K., Reich, T., Rossberg, A., Rossini, I., Wipff, G.: Do perchlorate and triflate anions bind to the uranyl cation in an acidic aqueous medium? A combined EXAFS and quantum mechanical investigation. Chem. Phys. Chem. 2, 591–598 (2001)

    Article  PubMed  Google Scholar 

  50. Ruas, A., Pochon, P., Simonin, J.-P., Moisy, P.: Nitric acid: modeling osmotic coefficients and acid-base dissociation using the BIMSA theory. Dalton Trans. 39, 10148–10153 (2010)

    Article  CAS  PubMed  Google Scholar 

  51. Sengupta, A., Ali, S.M., Shenoy, K.T.: Understanding the complexation of the Eu3+ ion with TODGA, CMPO, TOPO and DMDBTDMA: extraction, luminescene and theoretical investigation. Polyedron 117, 612–622 (2016)

    Article  CAS  Google Scholar 

  52. Sengupta, A., Thulasidas, S.K., Adya, V.C., Mohapatra, P.K., Godbole, S.V., Manchanda, V.K.: Purification of americium from assorted analytical waste in hydrochloric acid medium. J. Radioanal. Nucl. Chem. 292, 1017–1023 (2012)

    Article  CAS  Google Scholar 

  53. Sengupta, A., Murali, M.S., Thulasidas, S.K., Mohapatra, P.K.: Solvent system containing CMPO as the extractant in a diluent mixture containing n-dodecane and isodecanol for actinide partitioning runs. Hydrometallurgy 147–148, 228–233 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the CNRS/NASU agreement (reference: EDC 25196, Project # 135651) for this work is greatly appreciated. The EXAFS experiments have been supported by the European FP7 TALISMAN project, under contract with the European Commission. We acknowledge the ROBL staff for their assistance during EXAFS measurements. The authors thank Maurice Coppe, Dr. Lionel Allouche and Dr. Bruno Vincent (Institute of Chemistry, University of Strasbourg, France) for the NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clotilde Gaillard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ternova, D., Ouadi, A., Mazan, V. et al. New Ionic Liquid Based on the CMPO Pattern for the Sequential Extraction of U(VI), Am(III) and Eu(III). J Solution Chem 47, 1309–1325 (2018). https://doi.org/10.1007/s10953-018-0730-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0730-3

Keywords

Navigation