Skip to main content
Log in

Carbamate Formation and Amine Protonation Constants in 2-Amino-1-Butanol–CO2–H2O System and Their Temperature Dependences

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The apparent protonation constant of an amino butanol (AB) and its carbamate formation constant in the CO2–H2O–AB system were determined at T = 298.15–328.15 K, and at various ionic strengths up to 0.2 mol·L−1 by potentiometric titration. The Debye–Hückel equation was used to extrapolate the protonation constants to zero ionic strength. The variation of the thermodynamic equilibrium constant for carbamate formation with temperature was modeled according to the relationship of log10 K1 = 280.91/T − 0.1105, while the temperature dependency of the amine protonation constant was correlated by log10 K2 = 1926.53/T + 2.9482. Van’t Hoff type plots of the pK values showed linear relationships indicating that the standard enthalpy changes of reaction are constant over this range of temperatures. Hence, our current findings are crucial for designing efficient unit operations involving separation of CO2 from natural or flue gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MEA:

Monoethanolamine

DEA:

Diethanolamine

AP:

3-Amino-1-propanol

AB:

Amino butanol

α :

Moles of KHCO3 per mole of amino butanol

V NaOH :

Volume of NaOH (mL)

AMH+ :

Protonated amino butanol

AMe:

Amino butanol at equilibrium

AMCOO :

Amino butanol carbamate

HCO 3 :

Bicarbonate ion

CO 2−3 :

Carbonate ion

K 1 :

Equilibrium constant for carbamate formation (L·mol−1)

K prot :

Equilibrium constant for protonation (L·mol−1)

I :

Ionic strength (mol·L−1)

T :

Temperature (K)

K app :

Apparent equilibrium constant

γ i :

Activity coefficient of species i

References

  1. Astarita, G., Savage, D.W., Bisio, A.: Gas treating with chemical solvents. Wiley, New York (1983)

    Google Scholar 

  2. Chakraborty, A.K., Astarita, G., Bischoff, K.B.: CO2 absorption in aqueous solutions of hindered amines. Chem. Eng. Sci. 41, 997–1003 (1986)

    Article  CAS  Google Scholar 

  3. Aroua, M.K., Benamor, A., Haji-Sulaiman, M.Z.: Temperature dependency of the equilibrium constant for the formation of carbamate from diethanolamine. J. Chem. Eng. Data 42, 692–696 (1997)

    Article  CAS  Google Scholar 

  4. Aroua, M.K., Benamor, A., Haji-Sulaiman, M.Z.: Equilibrium constant for carbamate formation from monoethanolamine and its relationship with temperature. J. Chem. Eng. Data 44, 887–891 (1999)

    Article  CAS  Google Scholar 

  5. Chan, H.M., Danckwerts, P.V.: Equilibrium of MEA and DEA with bicarbonate and carbamate. Chem. Eng. Sci. 36, 229–230 (1981)

    Article  CAS  Google Scholar 

  6. McCann, N., Phan, D., Fernandes, D., Maeder, M.: A systematic investigation of carbamate stability constants by 1H NMR. Int. J. Greenhouse Gas Control 5, 396–400 (2011)

    Article  CAS  Google Scholar 

  7. Ciftja, A.F., Hartono, A., Svendsen, H.F.: Experimental study on carbamate formation in the AMP–CO2–H2O system at different temperatures. Chem. Eng. Sci. 107, 317–327 (2014)

    Article  CAS  Google Scholar 

  8. Benamor, A., Al-Marri, M.J., Hawari, A.: Experimental determination of carbamate formation and amine protonation constants in 3-amino-1-propanol–CO2–H2O system and their temperature dependency. Int. J. Greenhouse Gas Control 37, 237–242 (2015)

    Article  CAS  Google Scholar 

  9. Nagai, H., Kuwabara, K., Carta, G.: Temperature dependence of the dissociation constants of several amino acids. J. Chem. Eng. Data 53, 619–627 (2008)

    Article  CAS  Google Scholar 

  10. Lewis, G.N., Randall, M., Pitzer, K.S., Brewer, L.: Thermodynamics, 2nd edn. McGraw Hill, New York (1961)

    Google Scholar 

  11. Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    Article  CAS  Google Scholar 

  12. Edwards, T.J., Maurer, G., Newman, J., Prausnitz, J.M.: Vapor–liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes. AIChEJ 24, 966–976 (1978)

    Article  CAS  Google Scholar 

  13. Benamor, A., Baharun, A., Noor, U.Z.M., Aroua, M.H., Aroussi, A.: Absorption of carbon dioxide into piperazine activated diethanolamine solutions. In: Anoussi, A., Benyahia, F. (eds.) Proceedings of the 3rd Gas Processing Symposium. Elsevier, Oxford, pp. 42–49 (2012)

  14. Fernandes, D., Conway, W., Burns, R., Lawrance, G., Maeder, M., Puxly, G.: Investigations of primary and secondary amine carbamate stability by 1H NMR spectroscopy for post combustion capture of carbon dioxide. J. Chem. Thermodyn. 54, 183–191 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This paper was made possible by an NPRP Grant # 7-1154-2-433 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelbaki Benamor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmud, N., Benamor, A., Nasser, M.S. et al. Carbamate Formation and Amine Protonation Constants in 2-Amino-1-Butanol–CO2–H2O System and Their Temperature Dependences. J Solution Chem 47, 262–277 (2018). https://doi.org/10.1007/s10953-018-0726-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0726-z

Keywords

Navigation