Skip to main content
Log in

Partial Molar Volumes and Isentropic Compressions of Cyclic Ethers in Aqueous Solutions from 288.15 to 313.15 K at Atmospheric Pressure

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The partial molar volumes and isentropic compressions of aqueous solutions of tetrahydrofuran, tetrahydropyran, 1,4-dioxane, tetrahydropyran-2-methanol, 3-hydroxytetrahydrofuran, and tetrahydrofurfuryl alcohol were measured at 288.15, 298.15, and 313.15 K. Results are analyzed in terms of the effects of group addition to the molar volumes and isentropic compressions. The temperature dependence of the molar volumes and compressions, and their group contributions, are used to characterize changes in hydration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Franks, F., Quickenden, M.A.J., Reid, D.S., Watson, B.: Calorimetric and volumetric studies of dilute aqueous solution of cyclic ether derivatives. Trans. Faraday Soc. 66, 582–589 (1970)

    Article  CAS  Google Scholar 

  2. Franks, F., Ravenhill, J.R., Reid, D.S.: Thermodynamic studies of dilute aqueous solution of cyclic ethers and simple carbohydrates. J. Solution Chem. 1, 3–16 (1972)

    Article  CAS  Google Scholar 

  3. Høiland, H.: Thermodynamic data for biochemistry and biotechnology, Chap. 2. In: Hinz, H.-J. (ed.) Partial Molar Volumes of Biochemical Model Compounds in Aqueous Solution, pp. 17–44. Springer, Berlin (1986)

  4. Høiland, H.: Thermodynamic data for biochemistry and biotechnology, Chap. 4. In: Hinz, H.-J. (ed.) Partial Molar Compressibilities of Organic Solutes in Water, pp. 129–146. Springer, Berlin (1986)

  5. Neal, J.L., Going, D.A.I.: Volume–temperature relationships of hydrophobic and hydrophilic nonelectrolytes in water. J. Phys. Chem. 74, 658–664 (1970)

    Article  CAS  Google Scholar 

  6. Cabani, S., Conti, G., Lepori, L.: Volumetric properties of aqueous solutions of organic compounds. I. Cyclic ethers and cyclic amines. J. Phys. Chem. 76, 1338–1343 (1972)

    Article  CAS  Google Scholar 

  7. Cabani, S., Conti, G., Matteoli, E.: Partial molal expansibilities of organic compounds in aqueous solution. I. Alcohols and ethers. J. Solution Chem. 5, 751–763 (1976)

    Article  CAS  Google Scholar 

  8. Cabani, S., Conti, G., Matteoli, E.: Adiabatic and isothermal apparent molal compressibilities of organic compounds in water. I. Cyclic and open-chain secondary alcohols and ethers. J. Solution Chem. 8, 11–23 (1979)

    Article  CAS  Google Scholar 

  9. Kiyohara, O., Perron, G., Desnoyers, J.E.: Volumes and heat capacities of cyclic ethers and amines in water and of some electrolytes in these mixed aqueous solvents. Can. J. Chem. 53, 2591–2597 (1975)

    Article  CAS  Google Scholar 

  10. Kiyohara, O., D’Arcy, P.J., Benson, G.C.: Thermal expansivities of water + tetrahydrofuran mixtures at 298.15 K. Can. J. Chem. 56, 2803–2807 (1978)

    Article  CAS  Google Scholar 

  11. Roux, G., Perron, G., Desnoyers, J.E.: The heat capacities and volumes of some low molecular weight amides, ketones, esters, and ethers in water over the whole solubility range. Can. J. Chem. 56, 2808–2814 (1978)

    Article  CAS  Google Scholar 

  12. Harada, S., Nakajima, T., Komatsu, T., Nakagawa, T.: Apparent molal volumes and adiabatic compressibilities of ethylene glycol derivatives in water at 5, 25, and 45 °C. J. Solution Chem. 7, 463–474 (1978)

    Article  CAS  Google Scholar 

  13. Tasker, I.R., Spitzer, J.J., Surl, S.K., Wood, R.H.: Volumetric properties of some aqueous nonelectrolyte solution. J. Chem. Eng. Data 28, 266–275 (1983)

    Article  CAS  Google Scholar 

  14. Sakurai, M.: Partial molar volumes for 1,4-dioxane + water. J. Chem. Eng. Data 37, 492–496 (1992)

    Article  CAS  Google Scholar 

  15. Briggner, L.-E., Wadsö, I.: Some thermodynamic properties of crown ethers in aqueous solution. J. Chem. Thermodyn. 22, 143–148 (1990)

    Article  CAS  Google Scholar 

  16. Dhondge, S.S., Ramesh, L.: Isothermal compressibility and internal pressure studies of some non-electrolytes in aqueous solutions at low temperatures. J. Chem. Thermodyn. 39, 667–673 (2007)

    Article  CAS  Google Scholar 

  17. Swenson, D.M., Blodgett, M.B., Ziemer, S.P., Woolley, E.M.: Apparent molar volumes and apparent molar heat capacities of aqueous tetrahydrofuran, dimethyl sulfoxide, 1,4-dioxane and 1,2 dimethoxyethane at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa. J. Chem. Thermodyn. 40, 248–259 (2008)

    Article  CAS  Google Scholar 

  18. Patil, K.J., Pawar, R.B., Gokavi, G.S.: Studies of partial molar volumes of 18-crown-6 in water at 25 °C. J. Mol. Liq. 75, 143–148 (1998)

    Article  CAS  Google Scholar 

  19. Edward, J.T., Farrell, P.G., Shahidi, F.: Partial molar volumes of organic compounds in water. Part 1. Ethers, ketones, esters and alcohols. J. Chem. Soc. Faraday Trans. I(73), 705–714 (1977)

    Article  Google Scholar 

  20. Torres, R.B., Marchiore, A.C., Volpe, P.L.O.: Volumetric properties of binary mixtures of (water + organic solvents) at temperatures between T = 288.15 K and T = 303.15 K at p = 0.1 MPa. J. Chem. Thermodyn. 38, 526–541 (2006)

    Article  CAS  Google Scholar 

  21. Franks, F.: Physical chemistry of small carbohydrates–equilibrium solution properties. Pure Appl. Chem. 59, 1189–1202 (1987)

    Article  CAS  Google Scholar 

  22. Franks, F.: Scientific and technological aspects of aqueous glasses. Biophys. Chem. 105(2–3), 251–261 (2003)

    Article  CAS  Google Scholar 

  23. Bernal, P.J.Van, Hook, W.A.: Apparent molar volumes, isobaric expansion coefficients, and isentropic compressibilities, and their H/D isotope effects for some aqueous carbohydrate solutions. J. Chem Thermodyn. 18, 955–968 (1986)

    Article  CAS  Google Scholar 

  24. Bernal, P., Bunn, A., Logan, J., McCluan, J.: Apparent molar volumes and adiabatic compressibilities of crown ethers and glymes in aqueous solutions at various temperatures. J. Solution Chem. 29, 651–665 (2000)

    Article  CAS  Google Scholar 

  25. Bernal, P., McCluan, J.: Apparent molar volumes and adiabatic compressibilities of crown ethers and glymes in H2O and D2O. J. Solution Chem. 30, 119–131 (2001)

    Article  CAS  Google Scholar 

  26. Chalikian, T.V.: Ultrasonic and densimetric characterizations of the hydration properties of polar groups in monosaccharides. J. Phys. Chem. B 102, 6921–6926 (1998)

    Article  CAS  Google Scholar 

  27. Harvey, A. H., Peskin, A. P., Klein, S. A., NIST/ASME Steam Properties, Formulation for General and Scientific Use, NIST Standard Reference Database 10, Version 2.11; National Institute of Standards and Technology: Gaithersburg, MD (1996)

  28. Katrinak, T., Hnedkovsky, L., Cibulka, I.: Partial molar volumes and isentropic compressions of three polyhydric alcohols derived from propane at infinite dilution in water at temperatures T = (298 to 318) K and atmospheric pressure. J. Chem. Eng. Data 57, 1152–1159 (2012)

    Article  CAS  Google Scholar 

  29. Cibulka, I.: Partial molar isentropic compressions of selected cyclic ethers at infinite dilution in water at temperature T = (278 to 318) K and atmospheric pressure. J. Chem. Eng. Data 58, 1249–1254 (2013)

    Article  CAS  Google Scholar 

  30. Cibulka, I., Alexiou, C.: Partial molar volumes of organic solutes in water. XXI: Cyclic ethers at temperatures T = (278 to 373) K and at low pressure. J. Chem. Thermodyn. 42, 274–285 (2010)

    Article  CAS  Google Scholar 

  31. Cibulka, I.: Partial molar volumes and partial molar isentropic compressions of 15-crown-5 and 18-crown-6 ethers at infinite dilution in water at temperatures T = (278 to 343) K and atmospheric pressure. J. Chem. Eng. Data 59, 2075–2086 (2014)

    Article  CAS  Google Scholar 

  32. Cibulka, I., Hnĕdkovský, L.: Group contribution method for standard molar volumes of aqueous aliphatic alcohols, ethers and ketones over extended ranges of temperature and pressure. J. Chem. Thermodyn. 43, 1215–1223 (2011)

    Article  CAS  Google Scholar 

  33. Bolotov, A., Cibulka, I., Hnĕdkovsky, L.: Partial molar volumes and partial molar isentropic compressions of γ-butyrolactone and ε-caprolactone at infinite dilution in water at temperatures (278.15 to 318.15) K and at atmospheric pressure. J. Solution Chem. 40, 751–763 (2011)

    Article  CAS  Google Scholar 

  34. Mota, P.C., Ferreira, O., Hnedkovsky, L., Pinho, S.P., Cibulka, I.: Partial molar volumes of l-serine and L- threonine in aqueous ammonium sulfate solutions at (278.15, 288.15, 298.15, and 308.15) K. J. Solution Chem. 43, 283–297 (2014)

    Article  CAS  Google Scholar 

  35. Lepori, L., Gianni, P.: Partial molar volumes of ionic and nonionic organic solutes in water: A simple additivity scheme based on the intrinsic volume approach. J. Solution Chem. 29, 405–447 (2000)

    Article  CAS  Google Scholar 

  36. Nakayama, H.: Temperature dependence of the heats of solution of poly(ethylene glycol) and of related compounds. Bull. Chem. Soc. Jpn. 43, 1683–1686 (1970)

    Article  CAS  Google Scholar 

  37. Mizuno, K., Masuda, Y., Yamamura, T., Kitamura, J., Ogata, H., Bako, I., Tamai, Y., Yagasaki, T.: Roles of the ether oxygen in hydration of tetrahydrofuran studied by IR, NMR, and DFT calculation methods. J. Phys. Chem. B 113, 906–915 (2009)

    Article  CAS  Google Scholar 

  38. Mizuno, K., Imafuji, S., Fujiwara, T., Ohta, T., Tamiya, Y.: Hydration of the CH groups in 1,4-dioxane probed by NMR and IR: Contribution of blue-shifting CHOH hydrogen bonds. J. Phys. Chem. B 107, 3972–3978 (2003)

    Article  CAS  Google Scholar 

  39. Stangret, J., Gampe, T.: Hydration of tetrahydrofuran derived from FTIR spectroscopy. J. Mol. Struct. 734, 183–190 (2005)

    Article  CAS  Google Scholar 

  40. Laage, D., Stirnemann, G., Hynes, J.T.: Water reorientation in the hydration shells of hydrophilic and hydrophobic solutes. Sci. China Phys. Mech. Astron. 53, 1068–1072 (2010)

    Article  CAS  Google Scholar 

  41. Lockwood, D.M., Rossky, P.J.: Evaluation of functional group contributions to excess volumetric properties of solvated molecules. J. Phys. Chem. B 103, 1982–1990 (1999)

    Article  CAS  Google Scholar 

  42. Lockwood, D.M., Rossky, P.J., Levy, R.M.: Functional group contributions to partial molar compressibilities of alcohols in water. J. Phys. Chem. B 104, 4210–4217 (2000)

    Article  CAS  Google Scholar 

  43. Hedwig, G.R., Hinz, H.-J.: Group additivity schemes for the calculation of the partial molar heat capacities and volumes of unfolded proteins in aqueous solution. Biophys. Chem. 100, 239–260 (2002)

    Article  Google Scholar 

  44. Likhodi, O., Chalikian, T.V.: Partial molar volumes and adiabatic compressibilities of a series of aliphatic amino acids and oligoglycines in D2O. J. Am. Chem. Soc. 121, 1156–1163 (1999)

    Article  CAS  Google Scholar 

  45. Chalikian, T.V.: On the molecular origins of volumetric data. J. Phys. Chem. B 112, 911–917 (2008)

    Article  CAS  Google Scholar 

  46. Chalikian, T.V., Sarvazyan, A.P., Breslauer, K.J.: Hydration and partial compressibility of biological compounds. Biophys. Chem. 51, 89–109 (1994)

    Article  CAS  Google Scholar 

  47. Lee, S., Tikhomirova, A., Shalvardjian, N., Chalikian, T.V.: Partial molar volumes and adiabatic compressibilities of unfolded protein states. Biophys. Chem. 134, 185–199 (2008)

    Article  CAS  Google Scholar 

  48. Chalikian, T.V., Sarvazyan, A.P., Funck, T., Breslauer, K.J.: Partial molar volumes, expansibilities, and compressibilities of oligoglycines in aqueous solutions at 18–55 °C. Biopolymers 34, 541–553 (1994)

    Article  CAS  Google Scholar 

  49. Kharakoz, D.P.: Volumetric properties of proteins and their analogues in diluted water solutions. 2. Partial adiabatic compressibilities of amino acids at 15–70 °C. J. Phys. Chem. 95, 5634–5642 (1991)

    Article  CAS  Google Scholar 

  50. Santos, A.F.S., Moita, M.L.C., Nobre, L.C., Lampreia, I.M.S.: Group-contribution to limiting partial molar isentropic compressions of small amphiphile molecules in water. The temperature effect. J. Chem. Thermodyn. 69, 157–164 (2014)

    Article  CAS  Google Scholar 

  51. Høiland, H.: Partial molal volumes, expansibilities, and compressibilities for aqueous alcohol solutions between 5 °C and 40 °C. J. Solution Chem. 9, 857–866 (1980)

    Article  Google Scholar 

  52. Galamba, N.: Water’s structure around hydrophobic solutes and the iceberg model. J. Phys. Chem. B 117, 2153–2159 (2013)

    Article  CAS  Google Scholar 

  53. Graziano, G.: Comment on “Water’s structure around hydrophobic solutes and the iceberg model”. J. Phys. Chem. B 118, 2598–2599 (2014)

    Article  CAS  Google Scholar 

  54. Galamba, N.: Reply to “Comment on ‘Water’s structure around hydrophobic solutes and the iceberg model”. J. Phys. Chem. B 118, 2600–2603 (2014)

    Article  CAS  Google Scholar 

  55. Ben-Naim, A.: Hydrophobic hydrophilic phenomena in biochemical processes. Biophys. Chem. 105, 183–193 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Luke Brown (’17) joined this project when he was a rising sophomore in the summer of 2014 and worked on it until the conclusion of his Senior Research Project. We would like to thank the Rollins College Collaborative Summer Research Program and the Rollins College Chemistry Department Hellwege Research fund for supporting Luke Brown.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Bernal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernal, P., Brown, L. Partial Molar Volumes and Isentropic Compressions of Cyclic Ethers in Aqueous Solutions from 288.15 to 313.15 K at Atmospheric Pressure. J Solution Chem 47, 387–408 (2018). https://doi.org/10.1007/s10953-018-0725-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0725-0

Keywords

Navigation