Journal of Solution Chemistry

, Volume 47, Issue 3, pp 484–497 | Cite as

Modified McKay–Perring Equation and Its Two Particular Solutions

  • Zhi-Chang Wang


Zdanovskii’s rule is the simplest isopiestic molality relation of mixed electrolyte aqueous solutions and the McKay–Perring equation is a differentio-integral equation particularly suitable for calculating solute activity coefficients from isopiestic measurements. However, they have two unsolved problems, which have puzzled solution chemists for several decades: (1) Zdanovskii’s rule has been verified by precise isopiestic measurements. But, several scientists suggested that the rule contradicts the Debye–Hückel limiting law for extremely dilute unsymmetrical mixtures. (2) In the McKay–Perring equation, a solute activity coefficient is multiplied by a solute composition variable. Different scientists have suggested that the composition variable may be the total ionic strength, common ion concentration, total ionic concentration, or an additive function with arbitrary proportionality constants. But, the different choices of the composition variable may lead to different activity coefficient results. Here, I derive a modified McKay–Perring equation in which the composition variable has the exclusive physical meaning of total ionic concentration for mixed electrolyte solutions (or of total solute particle concentration for the mixed solutions containing nonelectrolyte solutes). I also demonstrate that Zdanovskii’s rule is consistent with the Debye–Hückel limiting law for extremely dilute unsymmetrical mixtures. I derive two particular solutions of the modified McKay–Perring equation: one for the systems obeying Zdanovskii’s rule and another for the systems obeying a limiting linear concentration rule. These theoretical results have been verified with literature experiments and model calculations.


Isopiestic Modified McKay–Perring equation Zdanovskii’s rule Limiting linear isopiestic relation Debye–Hückel limiting law Total ionic concentration 



The author thanks Dr. Joseph A. Rard for helpful comments and for supplying Ref. [15].


  1. 1.
    Rard, J.A., Platford, R.F.: Experimental methods: isopiestic. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn. CRC Press, Boca Raton (1991)Google Scholar
  2. 2.
    Zdanovskii, A.B.: Regularities in the property variations of mixed solutions. Tr. Solyanoi Lab. Akad. Nauk SSSR, No. 6, 5 (1936)Google Scholar
  3. 3.
    Stokes, R.H., Robinson, R.A.: Interactions in aqueous nonelectrolyte solutions. I. Solute–solvent equilibria. J. Phys. Chem. 70, 2126–2130 (1966)CrossRefGoogle Scholar
  4. 4.
    Mikhailov, V.A.: Thermodynamics of mixed electrolyte solutions. Russ. J. Phys. Chem. 42, 1414–1416 (1968)Google Scholar
  5. 5.
    Clegg, S.L., Seinfeld, J.H.: Improvement of the Zdanovskii–Stokes–Robinson model for mixtures containing solutes of different charge types. J. Phys. Chem. A 108, 1008–1017 (2004)CrossRefGoogle Scholar
  6. 6.
    McKay, H.A.C., Perring, J.K.: Calculation of the activity coefficients of mixed electrolytes from vapour pressures. Trans. Faraday Soc. 49, 163–165 (1953)CrossRefGoogle Scholar
  7. 7.
    Robinson, R.A.: A numerical illustration of the McKay–Perring equation. Trans. Faraday Soc. 49, 1411–1412 (1953)CrossRefGoogle Scholar
  8. 8.
    Bonner, O.D., Holland, V.F.: Activity coefficients of p-toluenesulfonic acid and sodium p-toluenesulfonate in mixed solutions. J. Am. Chem. Soc. 77, 5828–5829 (1955)CrossRefGoogle Scholar
  9. 9.
    Morgan, R.S.: A thermodynamic study of the system sodium sulfite–sodium bisulfate–water at 25 °C. Tappi 43, 357–364 (1960)Google Scholar
  10. 10.
    Shul’ts, M.M., Makarov, L.L., Yu-Jeng, S.: Activity coefficients of NiCl2 and NH4Cl in binary and ternary solutions at 25 °C. Russ. J. Phys. Chem. 36, 2194–2198 (1962)Google Scholar
  11. 11.
    Fu, H.-T., Chen, I., Su, C.-H., Chung, F.-Y.: Thermodynamic properties of the ternary system MeCl2–Me’Cl–H2O. I. Activity coefficients of electrolytes in MgCl2–NaCl–H2O. In: The First National Electrochemical Conference, Changchun, China, October 1963Google Scholar
  12. 12.
    Wang, Z.-C.: On the McKay–Perring equation (unpublished work). Year-end Thesis, Nanjing University, Nanjing, China (1963)Google Scholar
  13. 13.
    Fu, H.-T., Chen, I., Su, C.-H., Chung, F.-Y.: Thermodynamic properties of the ternary system MeCl2–Me’Cl–H2O. I. Activity coefficients of electrolytes in MgCl2–NaCl–H2O. J. Nanjing Univ. (Nat. Sci.) 8, 96–108 (1964)Google Scholar
  14. 14.
    Robinson, R.A., Bower, V.E.: Thermodynamics of the ternary system: water–sodium chloride–barium chloride at 25 °C. J. Res. Nat. Bur. Stand. (Phys. Chem.) 69A, 19–27 (1965)CrossRefGoogle Scholar
  15. 15.
    Vdovenko, V.M., Ryazanov, M.A.: Activity coefficients in polycomponent systems. I. Radiokhimiya (Engl. Transl.) 7, 39–44 (1965)Google Scholar
  16. 16.
    Wang, Z.-C.: Novel general linear concentration rules and their theoretical aspects for multicomponent systems at constant chemical potentials—ideal-like solution model and dilute-like solution model. Ber. Bunsen-Ges. Phys. Chem. 102, 1045–1058 (1998)CrossRefGoogle Scholar
  17. 17.
    Bower, V.E., Robinson, R.A.: Thermodynamics of the ternary system: water–glycine–potassium chloride at 25 °C from vapor pressure measurements. J. Res. Nat. Bur. Stand. (Phys. Chem.) 69A, 131–135 (1965)CrossRefGoogle Scholar
  18. 18.
    Schonhorn, H., Gregor, H.P.: Multilayer membrane electrodes. III. Activity of alkaline earth salts in mixed electrolytes. J. Am. Chem. Soc. 83, 3576–3579 (1961)CrossRefGoogle Scholar
  19. 19.
    Lanier, R.D.: Activity coefficients of sodium chloride in aqueous three-component solutions by cation-sensitive glass electrodes. J. Phys. Chem. 69, 3992–3998 (1965)CrossRefGoogle Scholar
  20. 20.
    Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolyte Solutions, 3rd edn. Reinhold, New York (1958)Google Scholar
  21. 21.
    Robinson, R.A., Stokes, R.H.: Activity coefficients of mannitol and potassium chloride in mixed aqueous solutions at 25 °C. J. Phys. Chem. 66, 506–507 (1962)CrossRefGoogle Scholar
  22. 22.
    Guggenheim, E.A.: Mixtures. Oxford University Press, London (1952)Google Scholar
  23. 23.
    Temkin, M.: Mixtures of fused salts as ionic solutions. Russ. J. Phys. Chem. 20, 411–420 (1945)Google Scholar
  24. 24.
    Fφrland, T.: Thermodynamic properties of simple ionic mixtures. Discuss. Faraday Soc. 32, 122–127 (1961)CrossRefGoogle Scholar
  25. 25.
    Wang, Z.-C., Zhang, X.-H., He, T.-Z., Bao, Y.-H.: High-temperature isopiestic studies on {(1 − y)Hg + y(1 − t)Bi + ytSn}(l) at 600 K. Comparison with the partial ideal-solution model. J. Chem. Thermodyn. 21, 653–665 (1989)CrossRefGoogle Scholar
  26. 26.
    Wang, Z.-C.: The linear concentration rules at constant partial molar quantity \( \bar{\Uppsi }_{0} \)—extension of Turkdogan’s rule and Zdanovskii’s rule. Acta Metall. Sin. 16, 195–206 (1980)Google Scholar
  27. 27.
    Wang, Z.-C.: Thermodynamics of multicomponent systems at constant partial molar quantity \( \bar{\Uppsi }_{0} \)—thermodynamical aspect of iso-\( \bar{\Uppsi }_{0} \) rules of Zdanovskii-type and Turkdogan-type. Acta Metall. Sin. 17, 168–176 (1981)Google Scholar
  28. 28.
    Wang, Z.-C.: The theory of partial simple solutions for multicomponent systems. In First China–USA Bilateral Metallurgical Conference, pp. 121–136. The Metall. Ind. Press, Beijing, China (1981)Google Scholar
  29. 29.
    Wang, Z.-C.: The theory of partial simple solutions for multicomponent systems. Acta Metall. Sin. 18, 141–152 (1982)Google Scholar
  30. 30.
    Wang, Z.-C., Lück, R., Predel, B.: Pure component A + classically ideal solution (B + C + …) = ? J. Chem. Soc. Faraday Trans. 86, 3641–3646 (1990)CrossRefGoogle Scholar
  31. 31.
    Wang, Z.-C.: Relationship among the Raoult law, Zdanovskii–Stokes–Robinson rule, and two extended Zdanovskii–Stokes–Robinson rules of Wang. J. Chem. Eng. Data 54, 187–192 (2009)CrossRefGoogle Scholar
  32. 32.
    Wang, Z.-C.: Relationship among the Henry law, Turkdogan rule, and two extended Turkdogan rules of Wang. J. Chem. Eng. Data 55, 1821–1827 (2010)CrossRefGoogle Scholar
  33. 33.
    Morachevskii, A.G., Butukhanova, T.V.: Application of the Zdanovskii rule to liquid metal systems with strong interaction of components. Russ. J. Appl. Chem. 80, 1300–1303 (2007)CrossRefGoogle Scholar
  34. 34.
    Kolosova, E.Y., Morachevskii, A.G., Tsymbulov, L.B.: Applicability of the Zdanovskii rule to sulfide melts. Russ. J. Appl. Chem. 81, 1287–1289 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryNortheastern UniversityShenyangChina

Personalised recommendations