Abstract
Novel, multibranched “triphenylamine based donor with added auxiliary methoxy donor and dicyanovinyl acceptor” based fluorescent molecules are developed. The dicyanoisophorone moiety is used as a configurationally locked polyene system for π-conjugation linking between donor and acceptor, to control the unnecessary intramolecular rotations in the molecule, which can to act as a rotor. The synthesized dyes show good fluorescent molecular rotor properties and strong emission solvatochromism. Auxiliary methoxy donors shift both the absorption and emission maxima towards longer wavelengths compared to known analogues, along with increased Stokes shifts. Fluorescent molecular rotor properties of the dyes are influenced by a local excited state to twisted intramolecular charge transfer state transition, which is discussed in terms of emission solvatochromism and Lippert–Mataga, Weller and Rettig polarity plots. Three different viscous solvent systems i.e., paraffin oil–dichloromethane, polyethylene glycol-400–dichloromethane and polyethylene glycol-400–N,N-dimethylformamide are used to investigate the sensitivity of rotors towards the viscosity of the environment. A maximum 16-fold enhancement in emission intensity and 0.616 × value is achieved for rotor Dye-3. The polarity effect of a binary viscous solvent system, by the virtue of intramolecular charge transfer, on the viscosity sensing properties of rotors is explained by constructing the Weller and Rettig’s plots for different viscous systems.
Similar content being viewed by others
Notes
Dye 3 is non-emissive in DMSO.
References
Signore, G., Nifosì, R., Albertazzi, L., Storti, B., Bizzarri, R.: Polarity-sensitive coumarins tailored to live cell imaging. J. Am. Chem. Soc. 132, 1276–1288 (2010)
Peng, X., Yang, Z., Wang, J., Fan, J., He, Y., Song, F., Wang, B., Sun, S., Qu, J., Qi, J., Yan, M.: Fluorescence ratiometry and fluorescence lifetime imaging: using a single molecular sensor for dual mode imaging of cellular viscosity. J. Am. Chem. Soc. 133, 6626–6635 (2011). https://doi.org/10.1021/ja1104014
Goh, W.L., Lee, M.Y., Joseph, T.L., Quah, S.T., Brown, C.J., Verma, C., Brenner, S., Ghadessy, F.J., Teo, Y.N.: Molecular rotors as conditionally fluorescent labels for rapid detection of biomolecular interactions. J. Am. Chem. Soc. 136, 6159–6162 (2014). https://doi.org/10.1021/ja413031h
Mataga, N., Kaifu, Y., Koizumi, M.: Solvent effects upon fluorescence spectra and the dipolemoments of excited molecules. Bull. Chem. Soc. Jpn 29, 465–470 (1956). https://doi.org/10.1246/bcsj.29.465
Grabowski, Z.R., Rotkiewicz, K., Rettig, W.: Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem. Rev. 103, 3899–4032 (2003). https://doi.org/10.1021/cr940745l
Valeur, B.: Effect of polarity on fluorescence emission. Polarity probes. In: Molecular Fluorescence, pp. 200–225. Wiley, Verlag (2001)
Weitman, H., Roslaniec, M., Frimer, A.A., Afri, M., Freeman, D., Mazur, Y., Ehrenberg, B.: Solvatochromic effects in the electronic absorption and nuclear magnetic resonance spectra of hypericin in organic solvents and in lipid bilayers. Photochem. Photobiol. 73, 110–118 (2001). https://doi.org/10.1562/0031-8655(2001)0730110SEITEA2.0.CO2
Satpati, A.K., Kumbhakar, M., Nath, S., Pal, H.: Photophysical properties of coumarin-7 dye: role of twisted intramolecular charge transfer state in high polarity protic solvents. Photochem. Photobiol. 85, 119–129 (2009). https://doi.org/10.1111/j.1751-1097.2008.00405.x
Shang, H., Fan, H., Liu, Y., Hu, W., Li, Y., Zhan, X.: A solution-processable star-shaped molecule for high-performance organic solar cells. Adv. Mater. 23, 1554–1557 (2011). https://doi.org/10.1002/adma.201004445
Roncali, J.: Molecular bulk heterojunctions: an emerging approach to organic solar cells. Acc. Chem. Res. 42, 1719–1730 (2009). https://doi.org/10.1021/ar900041b
Duan, C., Chen, K.-S., Huang, F., Yip, H.-L., Liu, S., Zhang, J., Jen, A.K.-Y., Cao, Y.: Synthesis, characterization, and photovoltaic properties of carbazole-based two-dimensional conjugated polymers with donor-π-bridge-acceptor side chains. Chem. Mater. 22, 6444–6452 (2010). https://doi.org/10.1021/cm1027157
Abdelhamid, H.N., Huang, Z., El-Zohry, A.M., Zheng, H., Zou, X.: A fast and scalable approach for synthesis of hierarchical porous zeolitic imidazolate frameworks and one-pot encapsulation of target molecules. Inorg. Chem. 56, 9139–9146 (2017). https://doi.org/10.1021/acs.inorgchem.7b01191
Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., Nann, T.: Quantum dots versus organic dyes as fluorescent labels. Nat. Method 5, 763–775 (2008)
Wu, Y., Xu, M., Chen, X., Yang, S., Wu, H., Pan, J., Xiong, X.: CTAB-assisted synthesis of novel ultrathin MoSe2 nanosheets perpendicular to graphene for the adsorption and photodegradation of organic dyes under visible light. Nanoscale. 8, 440–450 (2016). https://doi.org/10.1039/C5NR05748E
Roquet, S., Cravino, A., Leriche, P., Alévêque, O., Frère, P., Roncali, J.: Triphenylamine−thienylenevinylene hybrid systems with internal charge transfer as donor materials for heterojunction solar cells. J. Am. Chem. Soc. 128, 3459–3466 (2006). https://doi.org/10.1021/ja058178e
Sun, N., Zhang, P., Hou, Y.: Synthesis, photophysics, ion detection and DFT investigation of novel cyano-substituted red-light chromophores with a triphenylamine donor. RSC Adv. 6, 12205–12214 (2016). https://doi.org/10.1039/C5RA24341F
Hansch, C., Leo, A., Taft, R.W.: A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991). https://doi.org/10.1021/cr00002a004
Yang, Y., Li, B., Zhang, L.: Design and synthesis of triphenylamine-malonitrile derivatives as solvatochromic fluorescent dyes. Sens. Actuators B Chem. 183, 46–51 (2013). https://doi.org/10.1016/j.snb.2013.03.108
Zhang, J., Deng, D., He, C., He, Y., Zhang, M., Zhang, Z.G., Zhang, Z., Li, Y.: Solution-processable star-shaped molecules with triphenylamine core and dicyanovinyl endgroups for organic solar cells. Chem. Mater. 23, 817–822 (2011). https://doi.org/10.1021/cm102077j
Tang, X., Liu, W., Wu, J., Lee, C.S., You, J., Wang, P.: Synthesis, crystal structures, and photophysical properties of triphenylamine-based multicyano derivatives. J. Org. Chem. 75, 7273–7278 (2010). https://doi.org/10.1021/jo101456v
Leriche, P., Frère, P., Cravino, A., Alévêque, O., Roncali, J.: Molecular engineering of the internal charge transfer in thiophene−triphenylamine hybrid π-conjugated systems. J. Org. Chem. 72, 8332–8336 (2007). https://doi.org/10.1021/jo701390y
Wu, J., Wilson, B.A., Smith Jr., D.W., Nielsen, S.O.: Towards an understanding of structure-nonlinearity relationships in triarylamine-based push-pull electro-optic chromophores: the influence of substituent and molecular conformation on molecular hyperpolarizabilities. J. Mater. Chem. 2, 2591–2599 (2014). https://doi.org/10.1039/C3TC32510E
Liu, X., Sun, Y., Zhang, Y., Miao, F., Wang, G., Zhao, H., Yu, X., Liu, H., Wong, W.-Y.: A 2,7-carbazole-based dicationic salt for fluorescence detection of nucleic acids and two-photon fluorescence imaging of RNA in nucleoli and cytoplasm. Org. Biomol. Chem. 9, 3615–3618 (2011). https://doi.org/10.1039/C1OB05123G
Morales, A.R., Frazer, A., Woodward, A.W., Ahn-White, H.-Y., Fonari, A., Tongwa, P., Timofeeva, T., Belfield, K.D.: Design, synthesis, and structural and spectroscopic studies of push–pull two-photon absorbing chromophores with acceptor groups of varying strength. J. Org. Chem. 78, 1014–1025 (2013). https://doi.org/10.1021/jo302423p
Guo, E.Q., Ren, P.H., Zhang, Y.L., Zhang, H.C., Yang, W.J.: Diphenylamine end-capped 1,4-diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DPP) derivatives with large two-photon absorption cross-sections and strong two-photon excitation red fluorescence. Chem. Commun. 39, 5859–5861 (2009). https://doi.org/10.1039/b911808j
Marder, S.R., Gorman, C.B., Tiemann, B.G., Cheng, L.T.: Stronger acceptors can diminish nonlinear optical response in simple donor–acceptor polyenes. J. Am. Chem. Soc. 115, 3006–3007 (1993). https://doi.org/10.1021/ja00060a071
Dvornikov, A.S., Walker, E.P., Rentzepis, P.M.: Two-photon three-dimensional optical storage memory. J. Phys. Chem. A 113, 13633–13644 (2009). https://doi.org/10.1021/jp905655z
Tian, H., Feng, Y.: Next step of photochromic switches? J. Mater. Chem. 18, 1617–1622 (2008). https://doi.org/10.1039/B713216F
Barsu, C., Cheaib, R., Chambert, S., Queneau, Y., Maury, O., Cottet, D., Wege, H., Douady, J., Bretonniere, Y., Andraud, C.: Neutral push-pull chromophores for nonlinear optical imaging of cell membranes. Org. Biomol. Chem. 8, 142–150 (2010). https://doi.org/10.1039/B915654B
Gan, X., Wang, Y., Ge, X., Li, W., Zhang, X., Zhu, W., Zhou, H., Wu, J., Tian, Y.: Triphenylamine isophorone derivatives with two photon absorption: Photo-physical property, DFT study and bio-imaging. Dye. Pigment. 120, 65–73 (2015). https://doi.org/10.1016/j.dyepig.2015.04.007
Kuimova, M.K.: Mapping viscosity in cells using molecular rotors. Phys. Chem. Chem. Phys. 14, 12671–12686 (2012). https://doi.org/10.1039/C2CP41674C
Kottas, G.S., Clarke, L.I., Horinek, D., Michl, J.: Artificial molecular rotors. Chem. Rev. 105, 1281–1376 (2005). https://doi.org/10.1021/cr0300993
Koenig, M., Storti, B., Bizzarri, R., Guldi, D.M., Brancato, G., Bottari, G.: A fluorescent molecular rotor showing vapochromism, aggregation-induced emission, and environmental sensing in living cells. J. Mater. Chem. 4, 3018–3027 (2016). https://doi.org/10.1039/C5TC03541D
Haidekker, M.A., Theodorakis, E.A.: Molecular rotors-fluorescent biosensors for viscosity and flow. Org. Biomol. Chem. 5, 1669–1678 (2007). https://doi.org/10.1039/B618415D
Akers, W.J., Haidekker, M.A.: Precision assessment of biofluid viscosity measurements using molecular rotors. J. Biomech. Eng. 127, 1–14 (2005). https://doi.org/10.1115/1.1894366
Haidekker, M.A., Brady, T.P., Lichlyter, D., Theodorakis, E.A.: A ratiometric fluorescent viscosity sensor. J. Am. Chem. Soc. (2006). https://doi.org/10.1021/ja056370a
Qian, G., Wang, Z.Y.: Near-infrared organic compounds and emerging applications. Chem. Asian J. 5, 1006–1029 (2010). https://doi.org/10.1002/asia.200900596
Yao, Z., Yang, L., Cai, Y., Yan, C., Zhang, M., Cai, N., Dong, X., Wang, P.: Rigidifying the π-linker to enhance light absorption of organic dye-sensitized solar cells and influences on charge transfer dynamics. J. Phys. Chem. C 118, 2977–2986 (2014). https://doi.org/10.1021/jp412070p
Kim, S.H., Choi, J., Sakong, C., Namgoong, J.W., Lee, W., Kim, D.H., Kim, B., Ko, M.J., Kim, J.P.: The effect of the number, position, and shape of methoxy groups in triphenylamine donors on the performance of dye-sensitized solar cells. Dye. Pigment. 113, 390–401 (2015). https://doi.org/10.1016/j.dyepig.2014.09.014
Förster, T., Hoffmann, G.: Die viskositätsabhängigkeit der fluoreszenzquantenausbeuten einiger farbstoffsysteme. Z. Phys. Chem. 75, 63–76 (1971)
Zhou, F., Shao, J., Yang, Y., Zhao, J., Guo, H., Li, X., Ji, S., Zhang, Z.: Molecular rotors as fluorescent viscosity sensors: molecular design, polarity sensitivity, dipole moments changes, screening solvents, and deactivation channel of the excited states. Eur. J. Org. Chem. 2011, 4773–4787 (2011). https://doi.org/10.1002/ejoc.201100606
Kwon, O.-P., Ruiz, B., Choubey, A., Mutter, L., Schneider, A., Jazbinsek, M., Gramlich, V., Günter, P.: Organic nonlinear optical crystals based on configurationally locked polyene for melt growth. Chem. Mater. 18, 4049–4054 (2006). https://doi.org/10.1021/cm0610130
Thomas, K.R.J., Hsu, Y.-C., Lin, J.T., Lee, K.-M., Ho, K.-C., Lai, C.-H., Cheng, Y.-M., Chou, P.-T.: 2,3-Disubstituted thiophene-based organic dyes for solar cells. Chem. Mater. 20, 1830–1840 (2008). https://doi.org/10.1021/cm702631r
Hofmann, K., Schreiter, K., Seifert, A., Ruffer, T., Lang, H., Spange, S.: Solvatochromism and linear solvation energy relationship of diol- and proline-functionalized azo dyes using the Kamlet–Taft and Catalan solvent parameter sets. New J. Chem. 32, 2180–2188 (2008). https://doi.org/10.1039/B809055F
Margolin, Z., Long, F.A.: Acidic behavior of chloroform. J. Am. Chem. Soc. 95, 2757–2762 (1973). https://doi.org/10.1021/ja00790a001
Kothavale, S., Sekar, N.: Methoxy supported, deep red emitting mono, bis and tris triphenylamine-isophorone based styryl colorants: Synthesis, photophysical properties, ICT, TICT emission and viscosity sensitivity. Dye. Pigment. 136, 116–130 (2017). https://doi.org/10.1016/j.dyepig.2016.08.025
Font-Sanchis, E., Galian, R.E., Cespedes-Guirao, F.J., Sastre-Santos, A., Domingo, L.R., Fernandez-Lazaro, F., Perez-Prieto, J.: Alkoxy-styryl DCDHF fluorophores. Phys. Chem. Chem. Phys. 12, 7768–7771 (2010). https://doi.org/10.1039/C003752B
Telore, R.D., Sekar, N.: Carbazole-containing push-pull chromophore with viscosity and polarity sensitive emissions: synthesis and photophysical properties. Dye. Pigment. 129, 1–8 (2016). https://doi.org/10.1016/j.dyepig.2016.02.012
Peng, X., Song, F., Lu, E., Wang, Y., Zhou, W., Fan, J., Gao, Y.: Heptamethine cyanine dyes with a large Stokes shift and strong fluorescence: a paradigm for excited-state intramolecular charge transfer. J. Am. Chem. Soc. 127, 4170–4171 (2005). https://doi.org/10.1021/ja043413z
Paul, A., Samanta, A.: Free volume dependence of the internal rotation of a molecular rotor probe in room temperature ionic liquids. J. Phys. Chem. B 112, 16626–16632 (2008). https://doi.org/10.1021/jp8060575
Nad, S., Kumbhakar, M., Pal, H.: Photophysical properties of coumarin-152 and coumarin-481 dyes: Unusual behavior in nonpolar and in higher polarity solvents. J. Phys. Chem. A 107, 4808–4816 (2003). https://doi.org/10.1021/jp021543t
Konstantinova, T., Lazarova, R., Venkova, A., Vassileva, V.: On the synthesis and photostability of some new naphthalimide dyes. Polym. Degrad. Stab. 84, 405–409 (2004). https://doi.org/10.1016/j.polymdegradstab.2003.11.016
Acknowledgement
One of the authors (Yogesh Erande) gratefully acknowledges the financial support from the UGC, New Delhi, Govt. of India for SRF fellowship, File Number F.4-1/2006(BSR)/8-10/2007(BSR). Shantaram Kothavale is thankful to UGC, New Delhi, Govt. of India for SRF fellowship.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Erande, Y., Kothavale, S. & Sekar, N. Auxiliary Methoxy Aided Triphenylamine and Dicyanoisophorone Based Flurophores with Viscosity and Polarity Sensitive Intramolecular Charge Transfer. J Solution Chem 47, 353–372 (2018). https://doi.org/10.1007/s10953-018-0722-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-018-0722-3