Skip to main content
Log in

Auxiliary Methoxy Aided Triphenylamine and Dicyanoisophorone Based Flurophores with Viscosity and Polarity Sensitive Intramolecular Charge Transfer

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Novel, multibranched “triphenylamine based donor with added auxiliary methoxy donor and dicyanovinyl acceptor” based fluorescent molecules are developed. The dicyanoisophorone moiety is used as a configurationally locked polyene system for π-conjugation linking between donor and acceptor, to control the unnecessary intramolecular rotations in the molecule, which can to act as a rotor. The synthesized dyes show good fluorescent molecular rotor properties and strong emission solvatochromism. Auxiliary methoxy donors shift both the absorption and emission maxima towards longer wavelengths compared to known analogues, along with increased Stokes shifts. Fluorescent molecular rotor properties of the dyes are influenced by a local excited state to twisted intramolecular charge transfer state transition, which is discussed in terms of emission solvatochromism and Lippert–Mataga, Weller and Rettig polarity plots. Three different viscous solvent systems i.e., paraffin oil–dichloromethane, polyethylene glycol-400–dichloromethane and polyethylene glycol-400–N,N-dimethylformamide are used to investigate the sensitivity of rotors towards the viscosity of the environment. A maximum 16-fold enhancement in emission intensity and 0.616 × value is achieved for rotor Dye-3. The polarity effect of a binary viscous solvent system, by the virtue of intramolecular charge transfer, on the viscosity sensing properties of rotors is explained by constructing the Weller and Rettig’s plots for different viscous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Scheme 2
Fig. 7

Similar content being viewed by others

Notes

  1. Dye 3 is non-emissive in DMSO.

References

  1. Signore, G., Nifosì, R., Albertazzi, L., Storti, B., Bizzarri, R.: Polarity-sensitive coumarins tailored to live cell imaging. J. Am. Chem. Soc. 132, 1276–1288 (2010)

    Article  CAS  Google Scholar 

  2. Peng, X., Yang, Z., Wang, J., Fan, J., He, Y., Song, F., Wang, B., Sun, S., Qu, J., Qi, J., Yan, M.: Fluorescence ratiometry and fluorescence lifetime imaging: using a single molecular sensor for dual mode imaging of cellular viscosity. J. Am. Chem. Soc. 133, 6626–6635 (2011). https://doi.org/10.1021/ja1104014

    Article  CAS  Google Scholar 

  3. Goh, W.L., Lee, M.Y., Joseph, T.L., Quah, S.T., Brown, C.J., Verma, C., Brenner, S., Ghadessy, F.J., Teo, Y.N.: Molecular rotors as conditionally fluorescent labels for rapid detection of biomolecular interactions. J. Am. Chem. Soc. 136, 6159–6162 (2014). https://doi.org/10.1021/ja413031h

    Article  CAS  Google Scholar 

  4. Mataga, N., Kaifu, Y., Koizumi, M.: Solvent effects upon fluorescence spectra and the dipolemoments of excited molecules. Bull. Chem. Soc. Jpn 29, 465–470 (1956). https://doi.org/10.1246/bcsj.29.465

    Article  CAS  Google Scholar 

  5. Grabowski, Z.R., Rotkiewicz, K., Rettig, W.: Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem. Rev. 103, 3899–4032 (2003). https://doi.org/10.1021/cr940745l

    Article  Google Scholar 

  6. Valeur, B.: Effect of polarity on fluorescence emission. Polarity probes. In: Molecular Fluorescence, pp. 200–225. Wiley, Verlag (2001)

  7. Weitman, H., Roslaniec, M., Frimer, A.A., Afri, M., Freeman, D., Mazur, Y., Ehrenberg, B.: Solvatochromic effects in the electronic absorption and nuclear magnetic resonance spectra of hypericin in organic solvents and in lipid bilayers. Photochem. Photobiol. 73, 110–118 (2001). https://doi.org/10.1562/0031-8655(2001)0730110SEITEA2.0.CO2

    Article  CAS  Google Scholar 

  8. Satpati, A.K., Kumbhakar, M., Nath, S., Pal, H.: Photophysical properties of coumarin-7 dye: role of twisted intramolecular charge transfer state in high polarity protic solvents. Photochem. Photobiol. 85, 119–129 (2009). https://doi.org/10.1111/j.1751-1097.2008.00405.x

    Article  CAS  Google Scholar 

  9. Shang, H., Fan, H., Liu, Y., Hu, W., Li, Y., Zhan, X.: A solution-processable star-shaped molecule for high-performance organic solar cells. Adv. Mater. 23, 1554–1557 (2011). https://doi.org/10.1002/adma.201004445

    Article  CAS  Google Scholar 

  10. Roncali, J.: Molecular bulk heterojunctions: an emerging approach to organic solar cells. Acc. Chem. Res. 42, 1719–1730 (2009). https://doi.org/10.1021/ar900041b

    Article  CAS  Google Scholar 

  11. Duan, C., Chen, K.-S., Huang, F., Yip, H.-L., Liu, S., Zhang, J., Jen, A.K.-Y., Cao, Y.: Synthesis, characterization, and photovoltaic properties of carbazole-based two-dimensional conjugated polymers with donor-π-bridge-acceptor side chains. Chem. Mater. 22, 6444–6452 (2010). https://doi.org/10.1021/cm1027157

    Article  CAS  Google Scholar 

  12. Abdelhamid, H.N., Huang, Z., El-Zohry, A.M., Zheng, H., Zou, X.: A fast and scalable approach for synthesis of hierarchical porous zeolitic imidazolate frameworks and one-pot encapsulation of target molecules. Inorg. Chem. 56, 9139–9146 (2017). https://doi.org/10.1021/acs.inorgchem.7b01191

    Article  CAS  Google Scholar 

  13. Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., Nann, T.: Quantum dots versus organic dyes as fluorescent labels. Nat. Method 5, 763–775 (2008)

    Article  CAS  Google Scholar 

  14. Wu, Y., Xu, M., Chen, X., Yang, S., Wu, H., Pan, J., Xiong, X.: CTAB-assisted synthesis of novel ultrathin MoSe2 nanosheets perpendicular to graphene for the adsorption and photodegradation of organic dyes under visible light. Nanoscale. 8, 440–450 (2016). https://doi.org/10.1039/C5NR05748E

    Article  CAS  Google Scholar 

  15. Roquet, S., Cravino, A., Leriche, P., Alévêque, O., Frère, P., Roncali, J.: Triphenylamine−thienylenevinylene hybrid systems with internal charge transfer as donor materials for heterojunction solar cells. J. Am. Chem. Soc. 128, 3459–3466 (2006). https://doi.org/10.1021/ja058178e

    Article  CAS  Google Scholar 

  16. Sun, N., Zhang, P., Hou, Y.: Synthesis, photophysics, ion detection and DFT investigation of novel cyano-substituted red-light chromophores with a triphenylamine donor. RSC Adv. 6, 12205–12214 (2016). https://doi.org/10.1039/C5RA24341F

    Article  CAS  Google Scholar 

  17. Hansch, C., Leo, A., Taft, R.W.: A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991). https://doi.org/10.1021/cr00002a004

    Article  CAS  Google Scholar 

  18. Yang, Y., Li, B., Zhang, L.: Design and synthesis of triphenylamine-malonitrile derivatives as solvatochromic fluorescent dyes. Sens. Actuators B Chem. 183, 46–51 (2013). https://doi.org/10.1016/j.snb.2013.03.108

    Article  CAS  Google Scholar 

  19. Zhang, J., Deng, D., He, C., He, Y., Zhang, M., Zhang, Z.G., Zhang, Z., Li, Y.: Solution-processable star-shaped molecules with triphenylamine core and dicyanovinyl endgroups for organic solar cells. Chem. Mater. 23, 817–822 (2011). https://doi.org/10.1021/cm102077j

    Article  CAS  Google Scholar 

  20. Tang, X., Liu, W., Wu, J., Lee, C.S., You, J., Wang, P.: Synthesis, crystal structures, and photophysical properties of triphenylamine-based multicyano derivatives. J. Org. Chem. 75, 7273–7278 (2010). https://doi.org/10.1021/jo101456v

    Article  CAS  Google Scholar 

  21. Leriche, P., Frère, P., Cravino, A., Alévêque, O., Roncali, J.: Molecular engineering of the internal charge transfer in thiophene−triphenylamine hybrid π-conjugated systems. J. Org. Chem. 72, 8332–8336 (2007). https://doi.org/10.1021/jo701390y

    Article  CAS  Google Scholar 

  22. Wu, J., Wilson, B.A., Smith Jr., D.W., Nielsen, S.O.: Towards an understanding of structure-nonlinearity relationships in triarylamine-based push-pull electro-optic chromophores: the influence of substituent and molecular conformation on molecular hyperpolarizabilities. J. Mater. Chem. 2, 2591–2599 (2014). https://doi.org/10.1039/C3TC32510E

    CAS  Google Scholar 

  23. Liu, X., Sun, Y., Zhang, Y., Miao, F., Wang, G., Zhao, H., Yu, X., Liu, H., Wong, W.-Y.: A 2,7-carbazole-based dicationic salt for fluorescence detection of nucleic acids and two-photon fluorescence imaging of RNA in nucleoli and cytoplasm. Org. Biomol. Chem. 9, 3615–3618 (2011). https://doi.org/10.1039/C1OB05123G

    Article  CAS  Google Scholar 

  24. Morales, A.R., Frazer, A., Woodward, A.W., Ahn-White, H.-Y., Fonari, A., Tongwa, P., Timofeeva, T., Belfield, K.D.: Design, synthesis, and structural and spectroscopic studies of push–pull two-photon absorbing chromophores with acceptor groups of varying strength. J. Org. Chem. 78, 1014–1025 (2013). https://doi.org/10.1021/jo302423p

    Article  CAS  Google Scholar 

  25. Guo, E.Q., Ren, P.H., Zhang, Y.L., Zhang, H.C., Yang, W.J.: Diphenylamine end-capped 1,4-diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DPP) derivatives with large two-photon absorption cross-sections and strong two-photon excitation red fluorescence. Chem. Commun. 39, 5859–5861 (2009). https://doi.org/10.1039/b911808j

    Article  Google Scholar 

  26. Marder, S.R., Gorman, C.B., Tiemann, B.G., Cheng, L.T.: Stronger acceptors can diminish nonlinear optical response in simple donor–acceptor polyenes. J. Am. Chem. Soc. 115, 3006–3007 (1993). https://doi.org/10.1021/ja00060a071

    Article  CAS  Google Scholar 

  27. Dvornikov, A.S., Walker, E.P., Rentzepis, P.M.: Two-photon three-dimensional optical storage memory. J. Phys. Chem. A 113, 13633–13644 (2009). https://doi.org/10.1021/jp905655z

    Article  CAS  Google Scholar 

  28. Tian, H., Feng, Y.: Next step of photochromic switches? J. Mater. Chem. 18, 1617–1622 (2008). https://doi.org/10.1039/B713216F

    Article  CAS  Google Scholar 

  29. Barsu, C., Cheaib, R., Chambert, S., Queneau, Y., Maury, O., Cottet, D., Wege, H., Douady, J., Bretonniere, Y., Andraud, C.: Neutral push-pull chromophores for nonlinear optical imaging of cell membranes. Org. Biomol. Chem. 8, 142–150 (2010). https://doi.org/10.1039/B915654B

    Article  CAS  Google Scholar 

  30. Gan, X., Wang, Y., Ge, X., Li, W., Zhang, X., Zhu, W., Zhou, H., Wu, J., Tian, Y.: Triphenylamine isophorone derivatives with two photon absorption: Photo-physical property, DFT study and bio-imaging. Dye. Pigment. 120, 65–73 (2015). https://doi.org/10.1016/j.dyepig.2015.04.007

    Article  CAS  Google Scholar 

  31. Kuimova, M.K.: Mapping viscosity in cells using molecular rotors. Phys. Chem. Chem. Phys. 14, 12671–12686 (2012). https://doi.org/10.1039/C2CP41674C

    Article  CAS  Google Scholar 

  32. Kottas, G.S., Clarke, L.I., Horinek, D., Michl, J.: Artificial molecular rotors. Chem. Rev. 105, 1281–1376 (2005). https://doi.org/10.1021/cr0300993

    Article  CAS  Google Scholar 

  33. Koenig, M., Storti, B., Bizzarri, R., Guldi, D.M., Brancato, G., Bottari, G.: A fluorescent molecular rotor showing vapochromism, aggregation-induced emission, and environmental sensing in living cells. J. Mater. Chem. 4, 3018–3027 (2016). https://doi.org/10.1039/C5TC03541D

    Article  CAS  Google Scholar 

  34. Haidekker, M.A., Theodorakis, E.A.: Molecular rotors-fluorescent biosensors for viscosity and flow. Org. Biomol. Chem. 5, 1669–1678 (2007). https://doi.org/10.1039/B618415D

    Article  CAS  Google Scholar 

  35. Akers, W.J., Haidekker, M.A.: Precision assessment of biofluid viscosity measurements using molecular rotors. J. Biomech. Eng. 127, 1–14 (2005). https://doi.org/10.1115/1.1894366

    Article  Google Scholar 

  36. Haidekker, M.A., Brady, T.P., Lichlyter, D., Theodorakis, E.A.: A ratiometric fluorescent viscosity sensor. J. Am. Chem. Soc. (2006). https://doi.org/10.1021/ja056370a

    Google Scholar 

  37. Qian, G., Wang, Z.Y.: Near-infrared organic compounds and emerging applications. Chem. Asian J. 5, 1006–1029 (2010). https://doi.org/10.1002/asia.200900596

    Article  CAS  Google Scholar 

  38. Yao, Z., Yang, L., Cai, Y., Yan, C., Zhang, M., Cai, N., Dong, X., Wang, P.: Rigidifying the π-linker to enhance light absorption of organic dye-sensitized solar cells and influences on charge transfer dynamics. J. Phys. Chem. C 118, 2977–2986 (2014). https://doi.org/10.1021/jp412070p

    Article  CAS  Google Scholar 

  39. Kim, S.H., Choi, J., Sakong, C., Namgoong, J.W., Lee, W., Kim, D.H., Kim, B., Ko, M.J., Kim, J.P.: The effect of the number, position, and shape of methoxy groups in triphenylamine donors on the performance of dye-sensitized solar cells. Dye. Pigment. 113, 390–401 (2015). https://doi.org/10.1016/j.dyepig.2014.09.014

    Article  CAS  Google Scholar 

  40. Förster, T., Hoffmann, G.: Die viskositätsabhängigkeit der fluoreszenzquantenausbeuten einiger farbstoffsysteme. Z. Phys. Chem. 75, 63–76 (1971)

    Article  Google Scholar 

  41. Zhou, F., Shao, J., Yang, Y., Zhao, J., Guo, H., Li, X., Ji, S., Zhang, Z.: Molecular rotors as fluorescent viscosity sensors: molecular design, polarity sensitivity, dipole moments changes, screening solvents, and deactivation channel of the excited states. Eur. J. Org. Chem. 2011, 4773–4787 (2011). https://doi.org/10.1002/ejoc.201100606

    Article  CAS  Google Scholar 

  42. Kwon, O.-P., Ruiz, B., Choubey, A., Mutter, L., Schneider, A., Jazbinsek, M., Gramlich, V., Günter, P.: Organic nonlinear optical crystals based on configurationally locked polyene for melt growth. Chem. Mater. 18, 4049–4054 (2006). https://doi.org/10.1021/cm0610130

    Article  CAS  Google Scholar 

  43. Thomas, K.R.J., Hsu, Y.-C., Lin, J.T., Lee, K.-M., Ho, K.-C., Lai, C.-H., Cheng, Y.-M., Chou, P.-T.: 2,3-Disubstituted thiophene-based organic dyes for solar cells. Chem. Mater. 20, 1830–1840 (2008). https://doi.org/10.1021/cm702631r

    Article  CAS  Google Scholar 

  44. Hofmann, K., Schreiter, K., Seifert, A., Ruffer, T., Lang, H., Spange, S.: Solvatochromism and linear solvation energy relationship of diol- and proline-functionalized azo dyes using the Kamlet–Taft and Catalan solvent parameter sets. New J. Chem. 32, 2180–2188 (2008). https://doi.org/10.1039/B809055F

    Article  CAS  Google Scholar 

  45. Margolin, Z., Long, F.A.: Acidic behavior of chloroform. J. Am. Chem. Soc. 95, 2757–2762 (1973). https://doi.org/10.1021/ja00790a001

    Article  CAS  Google Scholar 

  46. Kothavale, S., Sekar, N.: Methoxy supported, deep red emitting mono, bis and tris triphenylamine-isophorone based styryl colorants: Synthesis, photophysical properties, ICT, TICT emission and viscosity sensitivity. Dye. Pigment. 136, 116–130 (2017). https://doi.org/10.1016/j.dyepig.2016.08.025

    Article  CAS  Google Scholar 

  47. Font-Sanchis, E., Galian, R.E., Cespedes-Guirao, F.J., Sastre-Santos, A., Domingo, L.R., Fernandez-Lazaro, F., Perez-Prieto, J.: Alkoxy-styryl DCDHF fluorophores. Phys. Chem. Chem. Phys. 12, 7768–7771 (2010). https://doi.org/10.1039/C003752B

    Article  CAS  Google Scholar 

  48. Telore, R.D., Sekar, N.: Carbazole-containing push-pull chromophore with viscosity and polarity sensitive emissions: synthesis and photophysical properties. Dye. Pigment. 129, 1–8 (2016). https://doi.org/10.1016/j.dyepig.2016.02.012

    Article  CAS  Google Scholar 

  49. Peng, X., Song, F., Lu, E., Wang, Y., Zhou, W., Fan, J., Gao, Y.: Heptamethine cyanine dyes with a large Stokes shift and strong fluorescence: a paradigm for excited-state intramolecular charge transfer. J. Am. Chem. Soc. 127, 4170–4171 (2005). https://doi.org/10.1021/ja043413z

    Article  CAS  Google Scholar 

  50. Paul, A., Samanta, A.: Free volume dependence of the internal rotation of a molecular rotor probe in room temperature ionic liquids. J. Phys. Chem. B 112, 16626–16632 (2008). https://doi.org/10.1021/jp8060575

    Article  CAS  Google Scholar 

  51. Nad, S., Kumbhakar, M., Pal, H.: Photophysical properties of coumarin-152 and coumarin-481 dyes: Unusual behavior in nonpolar and in higher polarity solvents. J. Phys. Chem. A 107, 4808–4816 (2003). https://doi.org/10.1021/jp021543t

    Article  CAS  Google Scholar 

  52. Konstantinova, T., Lazarova, R., Venkova, A., Vassileva, V.: On the synthesis and photostability of some new naphthalimide dyes. Polym. Degrad. Stab. 84, 405–409 (2004). https://doi.org/10.1016/j.polymdegradstab.2003.11.016

    Article  CAS  Google Scholar 

Download references

Acknowledgement

One of the authors (Yogesh Erande) gratefully acknowledges the financial support from the UGC, New Delhi, Govt. of India for SRF fellowship, File Number F.4-1/2006(BSR)/8-10/2007(BSR). Shantaram Kothavale is thankful to UGC, New Delhi, Govt. of India for SRF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaiyan Sekar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 34,797 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erande, Y., Kothavale, S. & Sekar, N. Auxiliary Methoxy Aided Triphenylamine and Dicyanoisophorone Based Flurophores with Viscosity and Polarity Sensitive Intramolecular Charge Transfer. J Solution Chem 47, 353–372 (2018). https://doi.org/10.1007/s10953-018-0722-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0722-3

Keywords

Navigation