Skip to main content

Advertisement

Log in

Solubility of Genistin in Ethanol/Acetone + Water and Daidzein in Ethanol + Water Co-solvent Mixtures Revisited: IBKI Preferential Solvation Method

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The preferential solvation parameters (δx1,3) of genistin in ethanol/acetone (1) + water (2) and daidzein in ethanol (1) + water (2) co-solvent mixtures at elevated temperatures were derived from available solubility data using the inverse Kirkwood–Buff integral method. The values of δx1,3 varied non-linearly with the co-solvent (1) proportion in all the aqueous mixtures. For the three co-solvent mixtures, the values of δx1,3 were negative in water-rich mixtures, which indicated that daidzein or genistin was preferentially solvated by water and can act as Lewis bases to establish hydrogen bonds with the proton-donor functional groups of water (1). The same behavior was also observed for daidzein in ethanol (1) + water (2) and acetone (1) + water (2) mixtures with co-solvent-rich composition. For daidzein in ethanol (1) + water (2) mixtures with composition 0.24 < x1 < 1, and genistin in ethanol (1) + water (2) and acetone (1) + water (2) mixtures with intermediate compositions, the local mole fractions of ethanol or acetone were higher than those of the mixtures and therefore the δx1,3 values were positive, which indicated that genistin and daidzein were preferentially solvated by the co-solvent. In these regions, daidzein and genistin were acting as a Lewis acid with ethanol or acetone molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Marcus, Y.: Preferential solvation in mixed solvents. In: Smith, P.E., Matteoli, E., O’Connell, J.P. (eds.) Fluctuation Theory of Solutions: Applications in Chemistry, Chemical Engineering, and Biophysics, pp. 65–92. CRC Press, Boca Raton (2013)

    Chapter  Google Scholar 

  2. Jouyban, A.: Handbook of Solubility Data for Pharmaceuticals. CRC Press, Boca Raton (2010)

    Google Scholar 

  3. Rubino, J.T.: Cosolvents and cosolvency. In: Swarbrick, J., Boylan, J.C. (eds.) Encyclopedia of Pharmaceutical Technology. Marcel Dekker Inc, New York (1988)

    Google Scholar 

  4. Jouyban, A.: Review of the cosolvency models for predicting solubility of drugs in water–cosolvent mixtures. J. Pharm. Sci. 11, 32–58 (2008)

    CAS  Google Scholar 

  5. Tooski, H.F., Jabbaril, M., Farajtabar, A.: Solubility and preferential solvation of the flavonoid naringenin in some aqueous/organic solvent mixtures. J. Solution Chem. 45, 1701–1714 (2016)

    Article  CAS  Google Scholar 

  6. Marcus, Y.: On the preferential solvation of drugs and PAHs in binary solvent mixtures. J. Mol. Liq. 140, 61–67 (2008)

    Article  CAS  Google Scholar 

  7. Cárdenas, Z.J., Almanza, O.A., Jouyban, A., Martínez, F., Acree Jr., W.E.: Solubility and preferential solvation of phenacetin in methanol + water mixtures at 298.15 K. Phys. Chem. Liq. (2018). https://doi.org/10.1080/00319104.2016.1233185

    Google Scholar 

  8. Delgado, D.R., Peña, M.Á., Martínez, F., Jouyban, A., Acree Jr., W.E.: Further numerical analyses on the solubility of sulfapyridine in ethanol + water mixtures. Pharm. Sci. 22, 143–152 (2016)

    Article  Google Scholar 

  9. Martínez, F., Jouyban, A., Acree Jr., W.E.: Solubility of phenobarbital in aqueous cosolvent mixtures revisited: IKBI preferential solvation analysis. Phys. Chem. Liq. (2017). https://doi.org/10.1080/00319104.2016.1218494

    Google Scholar 

  10. Marcus, Y.: Solvent Mixtures: Properties and Selective Solvation. Marcel Dekker, New York (2002)

    Google Scholar 

  11. Cárdenas, Z.J., Jiménez, D.M., Delgado, D.R., Almanza, O.A., Jouyban, A., Martínez, F., Acree Jr., W.E.: Solubility and preferential solvation of some n-alkyl-parabens in methanol + water mixtures at 298.15 K. J. Chem. Thermodyn. 108, 26–37 (2017)

    Article  Google Scholar 

  12. Chen, G.Q., Chen, J., Cheng, C., Cong, Y., Du, C.B., Zhao, H.K.: Solubility and preferential solvation of econazole nitrate in binary solvent mixtures of methanol, ethanol and 1,4-dioxane in water. J. Chem. Thermodyn. 111, 228–237 (2017)

    Article  CAS  Google Scholar 

  13. Li, X.B., Cheng, C., Cong, Y., Du, C.B., Zhao, H.K.: Preferential solvation of pioglitazone hydrochloride in some binary co-solvent mixtures according to the inverse Kirkwood–Buff integrals method. J. Chem. Thermodyn. 110, 218–226 (2017)

    Article  CAS  Google Scholar 

  14. Jabbari, M., Khosravi, N., Feizabadi, M., Ajloo, D.: Solubility temperature and solvent dependence and preferential solvation of citrus flavonoid naringin in aqueous DMSO mixtures: an experimental and molecular dynamics simulation study. Roy. Soc. Chem. Adv. 7, 14776–14789 (2017)

    CAS  Google Scholar 

  15. Cherdshewasart, W., Sriwatcharakul, S.: Metabolic activation promotes estrogenic activity of the phytoestrogen-rich plant. Maturitas 59, 128–136 (2008)

    Article  CAS  Google Scholar 

  16. Devi, M.K.A., Gondi, M., Sakthivelu, G., Giridhar, P., Rajasekaran, T., Ravishankar, G.A.: Functional attributes of soybean seeds and products, with reference to isoflavone content and antioxidant activity. Food Chem. 114, 771–776 (2009)

    Article  CAS  Google Scholar 

  17. Lee, C., Yang, L., Xu, J., Yeung, S.Y.V., Huang, Y., Chen, Z.: Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chem. 90, 735–741 (2005)

    Article  CAS  Google Scholar 

  18. Wu, T., He, M., Zang, X., Zhou, Y., Qiu, T., Pan, S., Xu, X.: A structure–activity relationship study of flavonoids as inhibitors of E. coli by membrane interaction effect. Biochem. Biophys. Acta 1828, 2751–2756 (2013)

    Article  CAS  Google Scholar 

  19. Hamdy, S.M., Latif, A.K.M.A., Drees, E.A., Soliman, S.M.: Prevention of rat breast cancer by genistin and selenium. Toxicol. Ind. Health 28, 746–757 (2012)

    Article  CAS  Google Scholar 

  20. Gruca, A., Krawczyk, Z., Szeja, W., Grynkiewicz, G., Rusin, A.: Synthetic genistein glycosides inhibiting EGFR phosphorylation enhance the effect of radiation in HCT 116 colon cancer cells. Molecules 19, 18558–18573 (2014)

    Article  Google Scholar 

  21. Uesugi, T., Toda, T., Tsuji, K., Ishida, H.: Comparative study on reduction of bone loss and lipid metabolism abnormality in ovariectomized rats by soy isoflavones, daidzin, genistin, and glycitin. Biol. Pharm. Bull. 24, 368–372 (2001)

    Article  CAS  Google Scholar 

  22. Liggins, J., Bluck, L.J.C., Runswick, S., Atkinson, C., Coward, W.A., Bingham, S.A.: Daidzein and genistein content of fruits and nuts. J. Nutr. Biochem. 11, 326–331 (2000)

    Article  CAS  Google Scholar 

  23. Fan, J.P., Liao, D.D., Zhen, B., Xu, X.K., Zhang, X.H.: Measurement and modeling of the solubility of genistin in water + (ethanol or acetone) binary solvent mixtures at T = 278.2 − 313.2 K. Ind. Eng. Chem. Res. 54, 12981–12986 (2015)

    Article  CAS  Google Scholar 

  24. Fan, J.P., Xu, X.K., Shen, G.L., Zhang, X.H.: Measurement and correlation of the solubility of genistin in eleven organic solvents from T = (283.2 to 323.2) K. J. Chem. Thermodyn. 89, 142–147 (2015)

    Article  CAS  Google Scholar 

  25. Fan, J.P., Xu, X.K., Shen, G.L., Zhang, X.H.: Erratum to “Measurement and correlation of the solubility of genistin in eleven organic solvents from T = (283.2 to 323.2) K” [J. Chem. Thermodyn. 89 (2015) 142 − 147]. J. Chem. Thermodyn. 90, 327–328 (2015)

    Article  CAS  Google Scholar 

  26. Nan, G.J., Shi, J., Huang, Y.R., Sun, J., Lv, J.H., Yang, G.D., Li, Y.P.: Dissociation constants and solubilities of daidzein and genistein in different solvents. J. Chem. Eng. Data 59, 1304–1311 (2014)

    Article  CAS  Google Scholar 

  27. Zeng, A.G., Pang, X.L., Wu, N., Wang, D., Nan, G.J., Yang, G.D., Bian, X.L.: Solubility of daidzein in propylene glycol plus water cosolvent mixtures. Fluid Phase Equilib. 366, 127–133 (2014)

    Article  CAS  Google Scholar 

  28. Yang, G.D., Huang, Y.R., Nan, G.J., Chen, H.J., Zeng, A.G., Bian, X.L.: Solubility of daidzein in the binary system of ethanol and water. J. Mol. Liq. 180, 160–163 (2013)

    Article  CAS  Google Scholar 

  29. Dong, X.Y., Cao, Y.F., Lin, H.M., Yao, Y., Guo, Y., Wang, T., Wu, S.D., Wu, Z.G.: Solubilities of formononetin and daidzein in organic solvents: effect of molecular structure and interaction on solvation process. J. Mol. Liq. 231, 542–554 (2017)

    Article  CAS  Google Scholar 

  30. Mao, D., Tang, J.H., Liu, Z.H., Shen, S.K., Li, Q., You, Y.K.: Determination and correlation of the solubility of daidzein in organic solvents. J. B. Univ. Chem. Technol. (Nat. Sci. Ed.) 42, 47–52 (2015). (in Chinese)

    CAS  Google Scholar 

  31. Wang, G.Q., Dai, X.D., Zhou, R.Y.: Determination of solubility and ionization constants of daidzein. J. Shenyang Pharm. Univ. 9, 161–163 (1992). (in Chinese)

    CAS  Google Scholar 

  32. Marcus, Y.: The Properties of Solvents. Wiley, Chichester (1998)

    Google Scholar 

  33. Khattab, I.S., Bandarkar, F., Fakhree, M.A.A., Jouyban, A.: Density, viscosity, and surface tension of water + ethanol mixtures from 293 to 323 K. Korean J. Chem. Eng. 29, 812–817 (2012)

    Article  CAS  Google Scholar 

  34. Estradabaltazar, A., Leónrodriguez, A.D., Hall, K.R., And, R.E., Iglesiassilva, G.A.: Experimental densities and excess volumes for binary mixtures containing propionic acid, acetone, and water from 283.15 K to 323.15 K at atmospheric pressure. J. Chem. Eng. Data 48, 1425–1431 (2003)

    Article  CAS  Google Scholar 

  35. Ben-Naim, A.: Theory of preferential solvation of nonelectrolytes. Cell Biophys. 12, 255–269 (1988)

    Article  CAS  Google Scholar 

  36. Ben-Naim, A.: Preferential solvation in two- and in three-component systems. Pure Appl. Chem. 62, 25–34 (1990)

    Article  CAS  Google Scholar 

  37. Marcus, Y.: Solubility and solvation in mixed solvent systems. Pure Appl. Chem. 62, 2069–2076 (1990)

    CAS  Google Scholar 

  38. Kamlet, M.J., Taft, R.W.: The solvatochromic comparison method. I. The beta-scale of solvent hydrogen-bond acceptor (HBA) basicities. J. Am. Chem. Soc. 98, 377–383 (1976)

    Article  CAS  Google Scholar 

  39. Duereh, A., Sato, Y., Smith, R.L., Inomata, H.: Replacement of hazardous chemicals used in engineering plastics with safe and renewable hydrogen-bond donor and acceptor solvent-pair mixtures. ACS Sustain Chem. Eng. 3, 1881–1889 (2015)

    Article  CAS  Google Scholar 

  40. Taft, R.W., Kamlet, M.J.: The solvatochromic comparison method. II. The alpha-scale of solvent hydrogen-bond donor (HBD) acidities. J. Am. Chem. Soc. 98, 2886–2894 (1976)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Project Funded by the Excellent Specialties Program Development of Jiangsu Higher Education Institutions, Jiangsu Provincial Department of Technology (BY2016066-07), and Jiangsu Provincial Department of Technology (BY 2015058-03). The authors would like to express their gratitude for the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongkun Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Li, W. & Zhao, H. Solubility of Genistin in Ethanol/Acetone + Water and Daidzein in Ethanol + Water Co-solvent Mixtures Revisited: IBKI Preferential Solvation Method. J Solution Chem 47, 150–171 (2018). https://doi.org/10.1007/s10953-018-0716-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0716-1

Keywords

Navigation