Skip to main content
Log in

Computational Analysis of Solute–Solvent Coupling Magnitude in the Z/E Isomerization Reaction of Nitroazobenzene and Benzylideneanilines

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The dynamic solvent effect often arises in solution reactions, where coupling between chemical reaction and solvent fluctuation plays a decisive role in the reaction kinetics. In this study, the Z/E isomerization reaction of nitoroazobenzene and benzylideneanilines in the ground state was computationally studied by molecular dynamics simulations. The non-equilibrium solvation effect was analyzed using two approaches: (1) metadynamics Gibbs energy surface exploration and (2) solvation Gibbs energy evaluation using a frozen solvation droplet model. The solute–solvent coupling parameter (Ccoupled) was estimated by the ratio of the solvent fluctuation Gibbs energy over the corresponding isomerization activation Gibbs energy. The results were discussed in comparison with the ones estimated by means of the analytical models based on a reaction–diffusion equation with a sink term. The second approach using a frozen solvation droplet reached qualitative agreement with the analytical models, while the first metadynamics approach failed. This is because the second approach explicitly considers the non-equilibrium solvation in the droplet, which consists of a solute at the reactant geometry immersed in the pre-organized solvents fitted with the solute at the transition state geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Calef, D.F., Deutch, J.M.: Diffusion-controlled reactions. Ann. Rev. Phys. Chem. 34, 393–524 (1983)

    Article  Google Scholar 

  2. Orr-Ewing, A.J.: Bimolecular chemical reaction dynamics in liquids. J. Chem. Phys. 140, 090901 (2014)

    Article  Google Scholar 

  3. Weinberg, N.: Theoretical models in high pressure reaction kinetics: from empirical correlations to molecular dynamics. High-Pressure Sci. Technol. (in Japanese) 8(2), 86–95 (1998)

    Article  CAS  Google Scholar 

  4. Kramers, H.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940)

    Article  CAS  Google Scholar 

  5. Asano, T., Crosstick, K., Furuta, H., Matsuo, K., Sumi, H.: Effects of solvent fluctuations on the rate of thermal Z/E isomerization of azobenzenes and N-benzylideneanilines. Bull. Chem. Soc. Jpn 69, 551–560 (1996)

    Article  CAS  Google Scholar 

  6. Asano, T., Furuta, H., Sumi, H.: Two-step mechanism in single-step osomerizations. Kinetics in a highly viscous liquid phase. J. Am. Chem. Soc. 116, 5545–5550 (1994)

    Article  CAS  Google Scholar 

  7. Peters, B.: Common features of extraordinary rate theories. J. Phys. Chem. B 119, 6349–6356 (2015)

    Article  CAS  Google Scholar 

  8. Hänggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990)

    Article  Google Scholar 

  9. Berne, B.J., Borkovec, M., Straub, J.E.: Classical and modern methods in reaction rate theory. J. Phys. Chem. 92, 3711–3725 (1988)

    Article  CAS  Google Scholar 

  10. Pollak, E., Talkner, P.: Reaction rate theory: what it was, where is it today, and where is it going? Chaos 15, 026116 (2005)

    Article  Google Scholar 

  11. Grote, R.F., Hynes, J.T.: Reactive modes in condensed phase reactions. J. Chem. Phys. 74, 4465–4475 (1981)

    Article  CAS  Google Scholar 

  12. Hynes, J.T.: The theory of reactions in solutions. In: Baer, M. (ed.) Theory of Chemical Reaction Dynamics, vol. 4, pp. 171–234. CRC Press, Boca Raton (1985)

    Google Scholar 

  13. van der Zwan, G., Hynes, J.T.: A simple dipole isomerization model for non-equilibrium solvation dynamics in reactions in polar solvents. Chem. Phys. 90, 21–35 (1984)

    Article  Google Scholar 

  14. Hynes, J.T.: Molecules in motion: chemical reaction and allied dynamics in solution and elsewhere. Ann. Rev. Phys. Chem. 66, 1–20 (2015)

    Article  CAS  Google Scholar 

  15. Pollak, E.: Theory of activated rate processes: a new derivation of Kramers’ expression. J. Chem. Phys. 85, 865–867 (1986)

    Article  CAS  Google Scholar 

  16. Agmon, N., Hopfield, J.J.: Transient kinetics of chemical reactions with bounded diffusion perpendicular to the reaction coordinate: intramolecular processes with slow conformational changes. J. Chem. Phys. 78, 6947–6959 (1983)

    Article  CAS  Google Scholar 

  17. Sumi, H., Marcus, R.A.: Dynamical effects in electron transfer reactions. J. Chem. Phys. 84, 4894–4914 (1986)

    Article  CAS  Google Scholar 

  18. Nadler, W., Marcus, R.A.: Dynamical effects in electron transfer reactions. II. Numerical solution. J. Chem. Phys. 86, 3906–3924 (1987)

    Article  CAS  Google Scholar 

  19. Basilevsky, M.V., Ryaboy, V.M., Weinberg, N.N.: Kinetics of chemical reactions in condensed media in the framework of the two-dimensional stochastic model. J. Phys. Chem. 94, 8734–8740 (1990)

    Article  Google Scholar 

  20. Weidenmüller, H.A., Zhang, J.-S.: Stationary diffusion over a multidimensional potential barrier: a generalization of Kramers’ formula. J. Stat. Phys. 34, 191–201 (1984)

    Article  Google Scholar 

  21. Langer, J.S.: Theory of the condensation point. Ann. Phys. 41, 108–157 (1967)

    Article  CAS  Google Scholar 

  22. Berezhkovskii, A., Zitserman, V.Y.: Anomalous regime for decay of the metastable state: an extension of multidimensional Kramer’s theory. Chem. Phys. Lett. 158, 369–374 (1989)

    Article  CAS  Google Scholar 

  23. Biswas, R., Bagchi, B.: Activated barrier crossing dynamics in slow, viscous liquids. J. Chem. Phys. 105, 7543–7549 (1996)

    Article  CAS  Google Scholar 

  24. Asano, T.: Kinetics in highly viscous solutions: dynamic solvent effects in slow reactions. Pure Appl. Chem. 71, 1691–1704 (1999)

    Article  CAS  Google Scholar 

  25. Sumi, H., Asano, T.: General expression for rates of solution reactions influenced by slow solvent fluctuations, and its experimental evidence. Electorochim. Acta 42, 2763–2777 (1997)

    Article  CAS  Google Scholar 

  26. Sumi, H., Asano, T.: An experimental examination of Biswas-Bagchi’s prediction on the viscosity dependence of the rate of activated barrier surmounting in viscous liquids. Chem. Phys. Lett. 294, 493–498 (1998)

    Article  Google Scholar 

  27. Chipot, C., Pohorille, A. (eds.): Free Energy Calculations. Springer, New York (2007)

  28. Bolhuis, P.G., Chandler, D., Dellago, C., Geissler, P.L.: Transition path sampling: throwing ropes over rough mountain passes in the dark. Ann. Rev. Phys. Chem. 53, 291–318 (2002)

    Article  CAS  Google Scholar 

  29. Hamelberg, D., Mongan, J., McCammon, A.J.: Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J. Chem. Phys. 120, 11919–11929 (2004)

    Article  CAS  Google Scholar 

  30. Laio, A., Parrinello, M.: Metadynamics: a method to stimulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Proc. Natl. Acad. Sci. USA 99, 12562–12566 (2002)

    Article  CAS  Google Scholar 

  31. Bussi, G., Branduardi, D.: Free energy calculations with metadynamics: theory and practice. In: Parrill, A.L., Lipkowitz, K.B. (eds.) Reviews in Computational Chemistry, vol. 28. Wiley, New York (2015)

    Google Scholar 

  32. Barducci, A., Bussi, G., Parrinello, M.: Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100, 020603 (2008)

    Article  Google Scholar 

  33. Bussi, G., Gervasio, F.L., Laio, A., Parrinello, M.: Free-energy landscape for β hairpin folding from combined parallel tempering and metadynamics. J. Am. Chem. Soc. 128, 13435–13441 (2006)

    Article  CAS  Google Scholar 

  34. Piana, S., Laio, A.: A bias-exchange approach to protein folding. J. Phys. Chem. B 111, 4553–4559 (2007)

    Article  CAS  Google Scholar 

  35. Laio, A., Rodrigues-Fortea, A., Gervasio, F.L., Ceccarelli, M., Parrinello, M.: Assessing the accuracy of metadynamics. J. Phys. Chem. B 109, 6714–6721 (2005)

    Article  CAS  Google Scholar 

  36. Bian, Y., Zhang, J., Wang, J., Wang, W.: On the accuracy of metadynamics and its variations in a protein folding process. Mol. Simul. 41, 752–763 (2015)

    Article  CAS  Google Scholar 

  37. Asano, T., Yano, T., Okada, T.: Mechanistic study of thermal Z-E isomerization of azobenzenes by high-pressure kinetics. J. Am. Chem. Soc. 104, 4900–4904 (1982)

    Article  CAS  Google Scholar 

  38. Asano, T., Okada, T.: Thermal Z-E isomerization of azobenzenes. The pressure, solvent, and substituent effects. J. Org. Chem. 49, 4387–4391 (1984)

    Article  CAS  Google Scholar 

  39. Asano, T., Okada, T., Herkstroeter, W.G.: Mechanism of geometrical isomerization about the carbon-nitrogen double bond. J. Org. Chem. 54, 379–383 (1989)

    Article  CAS  Google Scholar 

  40. Asano, T., Furuta, H., Hofmann, H.-J., Cimiraglia, R., Tsuno, Y., Fujio, M.: Mechanism of thermal Z/E isomerization of substituted N-benzylideneanilines. Nature of the activated complex with an sp-hybridized nitrogen atom. J. Org. Chem. 58, 4418–4423 (1993)

    Article  CAS  Google Scholar 

  41. Asano, T., Matsuo, K., Sumi, H.: Effects of solvent fluctuations on the rate of the thermal Z/E isomerization of N-benzylideneanilines in a highly viscous liquid hydrocarbon. Bull. Chem. Soc. Jpn 70, 239–244 (1997)

    Article  CAS  Google Scholar 

  42. Asano, T., Okada, T.: Further kinetic evidence for the competitive rotational and inversional Z-E isomerization of substituted azobenzenes. J. Org. Chem. 51, 4454–4458 (1986)

    Article  CAS  Google Scholar 

  43. Yamataka, H., Ammal, S.C., Asano, T., Ohga, Y.: Thermal isomerization at a CN double bond. How does the mechanism vary with the substituents? Bull. Chem. Soc. Jpn 78, 1851–1855 (2005)

    Article  CAS  Google Scholar 

  44. Case, D.A., Darden, T.A., Cheatham III, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Walker, R.C., Zhang, W., Merz, K.M., Roberts, B., Hayik, S., Roitberg, A., Seabra, G., Swails, J., Goetz, A.W., Kolossváry, I., Wong, K.F., Paesani, F., Vanicek, J., Wolf, R.M., Liu, J., Wu, X., Brozell, S.R., Steinbrecher, T., Gohlke, H., Cai, Q., Ye, X., Wang, J., Hsieh, M.-J., Cui, G., Roe, D.R., Mathews, D.H., Seetin, M.G., Salomon-Ferrer, R., Sagui, C., Babin, V., Luchko, T., Gusarov, S., Kovalenko, A., Kollman, P.A.: AMBER 12. University of California, San Francisco (2012)

    Google Scholar 

  45. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development and testing of a general AMBER force field. J. Comp. Chem. 25, 1157–1174 (2004)

    Article  CAS  Google Scholar 

  46. Wang, J., Wang, W., Kollman, P.A., Case, D.A.: Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 25, 247–260 (2006)

    Article  Google Scholar 

  47. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, J., Heyd, J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09 Revision B.1. Gaussian Inc., Wallingford CT (2009)

  48. Tribello, G.A., Bonomi, M., Branduardi, D., Camilloni, C., Bussi, G.: PLUMED2: new feathers for an old bird. Comp. Phys. Comm. 185, 604–613 (2014)

    Article  CAS  Google Scholar 

  49. Ohue, M., Shimoda, T., Suzuki, S., Matsuzaki, Y., Ishida, T., Akiyama, Y.: MEGADOCK 4.0: an ultra-high-performance protein–protein docking software for heterogeneous supercomputers. Bioinformatics 30, 3281–3283 (2014)

    Article  CAS  Google Scholar 

  50. Matubayasi, N., Nakahara, M.: Theory of solutions in the energetic representation. I. Formulation. J. Chem. Phys. 113, 6070–6081 (2000)

    Article  CAS  Google Scholar 

  51. ERMOD. https://sourceforge.net/projects/ermod/

  52. Dhaliwal, M., Basilevsky, M.V., Weinberg, N.: Dynamics effects of nonequilibrium solvation: potential and free energy surfaces for Z/E isomerization in solvent–solute coordinates. J. Chem. Phys. 126, 234505 (2007)

    Article  Google Scholar 

  53. Sumi, H.: Theory on reaction rates in nonthermalized steady states during conformational fluctuations in viscous solvents. J. Phys. Chem. 95, 3334–3350 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to Prof. Mikhail Basilevsky (Russian Academy of Sciences) for his generous permission to use his program for evaluation of the parameter BW-C2. Helpful discussions with Professor Emeritus Tsutomu Asano (Oita University, Japan) and Prof. Noam Weinberg (University College of Fraser Valley, Canada) are greatly acknowledged. One of the authors (Y.S.) was financially supported by Grant-in-Aids for Scientific Research (C) (15K05434) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Shigemitsu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 779 kb)

Supplementary material 2 (DOCX 629 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shigemitsu, Y., Ohga, Y. Computational Analysis of Solute–Solvent Coupling Magnitude in the Z/E Isomerization Reaction of Nitroazobenzene and Benzylideneanilines. J Solution Chem 47, 127–139 (2018). https://doi.org/10.1007/s10953-018-0711-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0711-6

Keywords

Navigation