Skip to main content
Log in

Dissociation Behavior of l(+)-Lactic Acid in Aqueous Solutions of (1-Alkyl-4-methylpyridinium bromide + Poly (ethyleneglycol)) at T = (288.15–318.15) K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The effect of 1-alkyl-4-methylpyridinium based ionic liquids on the conductivity behavior of l(+)-lactic acid (LaH) was studied in Poly(ethylene glycol) (PEG) aqueous solutions. The molar conductivities of LaH in the aqueous solutions of PEG, (PEG + 1-hexyl-4-methylpyridinium bromide) and (PEG + 1-octyl-4-methylpyridinium bromide) were measured over the temperature ranges of 288.15–318.15 K. The molar conductivity data were analyzed by applying the Quint–Viallard (QV) conductivity equation to determine the limiting molar conductivities (Λ 0) and dissociation constants (\( K_{\text{D}} \)). The results show that the values of limiting molar conductivity increased as the temperature increased, which indicates that the dissociation process is endothermic. The \( K_{\text{D}} \) values were also used to calculate the dissociation standard thermodynamic functions (\( \Delta G_{\text{D}}^{0} \), \( \Delta S_{\text{D}}^{0} \) and \( \Delta H_{\text{D}}^{0} \)). The results revealed that the dissociation process of LaH is controlled by entropy at all temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hong, W.H., Kim, Y.J., Wonzy, G.: Effect of recycle and feeding method on batch reactive recovery system of lactic acid. Korean J. Chem. Eng. 19, 808–814 (2002)

    Article  Google Scholar 

  2. Matsumoto, A., Matsukawa, Y., Suzuki, T., Yoshino, H.: Drug release characteristics of multi-reservoir type microspheres with poly(dl-lactide–co–glycolide) and poly(dl–lactide). J. Control Release 106, 172–180 (2005)

    Article  CAS  Google Scholar 

  3. Cheng, K., Zhao, X., Zeng, J.: Downstream processing of biotechnological produced succinic acid. Appl. Microbiol. Biot. 4, 841–850 (2012)

    Article  Google Scholar 

  4. Schäfer, T., Rodrigues, C.M., Afonso, C.A.M.: Selective recovery of solutes from ionic liquids by pervaporation—a novel approach for purification and green processing. Chem. Commun. 17, 1622–1623 (2001)

    Article  Google Scholar 

  5. Chooklin, S., Kaewsichan, L., Kaewsrichan, J.: Potential use of oil palm sap on lactic acid production and product adsorption on Dowex™ 66 resin as adsorbent. Asia-Pac. J. Chem. Eng. 1, 23–31 (2012)

    Google Scholar 

  6. Albertsson, P.A.: Partitioning of Cell Particles and Macromolecules. Wiley-Interscience, New York (1986)

    Google Scholar 

  7. Walter, H., Brooks, D.E., Fisher, D.: Partitioning in Aqueous Two-Phase Systems. Academic Press, New York (1985)

    Google Scholar 

  8. Noshadi, S., Sadeghi, R.: Evaluation of the capability of ionic liquid–amino acid aqueous systems for the formation of aqueous biphasic systems and their applications in extraction. J. Phys. Chem. B. 121, 2650–2664 (2017)

    Article  CAS  Google Scholar 

  9. de Souza, R.L., Campos, V.C., Ventura, S.P.M., Soares, C.M.F., Coutinho, J.A.P., Lima, A.S.: Effect of ionic liquids as adjuvants on PEG-based ABS formation and the extraction of two probe dyes. Fluid Phase Equilib. 375, 30–36 (2014)

    Article  Google Scholar 

  10. da Costa Lopes, A.M., Bogel-Łukasik, R.: ABS Constituted by Ionic Liquids and Carbohydrates. Green Chem. Sustain. Technol., pp. 37–60. Springer, New York (2016)

  11. Neves, C.M.S.S., Shahriari, S., Lemus, J., Pereira, J.F.B., Freire, M.G., Coutinho, J.A.P.: Aqueous biphasic systems composed of ionic liquids and polypropylene glycol: insights into their liquid–liquid demixing mechanisms. Phys. Chem. Chem. Phys. 18, 20571–20582 (2016)

    Article  CAS  Google Scholar 

  12. Santos, J.H.P.M., Silva, F.A., Coutinho, J.A.P., Ventura, S.P.M., Pessoa, A.: Ionic liquids as a novel class of electrolytes in polymeric aqueous biphasic systems. Process Biochem. 50, 661–668 (2015)

    Article  CAS  Google Scholar 

  13. Moradian, T., Sadeghi, R.: Isopiestic investigations of the interactions of water-soluble polymers with imidazolium-based ionic liquids in aqueous solutions. J. Phys. Chem. B. 117, 7710–7717 (2013)

    Article  CAS  Google Scholar 

  14. Helfrich, M.R., EI-Kouedi, M., Etherton, M.R., Keating, C.D.: Partitioning and assembly of metal particles and their bioconjugates in aqueous two-phase systems. Langmuir 21, 8478–8486 (2005)

    Article  CAS  Google Scholar 

  15. Hallett, J.P., Welton, T.: Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev. 111, 3508–3576 (2011)

    Article  CAS  Google Scholar 

  16. Morais, A.R.C., da Costa Lopes, A.M., Bogel-Lukasik, R.: Carbon dioxide in biomass processing: contributions to the green biorefinery concept. Chem. Rev. 115, 3–27 (2015)

    Article  CAS  Google Scholar 

  17. Bogel-Lukasik, R., Matkowska, D., Zakrzewska, M.E., Bogel-Lukasik, E., Hofman, T.: The phase envelopes of alternative solvents (ionic liquid, CO2) and building blocks of biomass origin (lactic acid, propionic acid). Fluid Phase Equilib. 295, 177–185 (2010)

    Article  CAS  Google Scholar 

  18. Domanska, U., Wlazlo, M.: Effect of the cation and anion of the ionic liquid on desulfurization of model fuels. Fuel 134, 114–125 (2014)

    Article  CAS  Google Scholar 

  19. Arshadi, M., Attard, T.M., Lukasik, R.M., Brncic, M., da Costa Lopes, A.M., Finell, M., Geladi, P., Gerschenson, L.N., Gogus, F., Herrero, M., Hunt, A.J., Ibanez, E., Kamm, B., Mateos-Aparicio, I., Matias, A., Mavroudis, N.E., Montoneri, E., Morais, A.R.C., Nilsson, C., Papaioannou, E.H., Richel, A., Ruperez, P., Skrbic, B., BodrozaSolarov, M., Svarc-Gajic, J., Waldron, K.W., Yuste-Cordoba, F.J.: Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain. Green Chem. 18, 6160–6204 (2016)

    Article  CAS  Google Scholar 

  20. Martin, A.W., Tartar, H.V.: The ionization constant of lactic acid, 0–50°, from conductance measurements. J. Am. Chem. Soc. 59, 2672–2675 (1937)

    Article  CAS  Google Scholar 

  21. Partanen, J.I., Juusola, P.M., Minkkinen, P.O.: Determination of stoichiometric dissociation constants of lactic acid in aqueous salt solutions at 291.15 and at 298.15 K. Fluid Phase Equilib. 204, 245–266 (2003)

    Article  CAS  Google Scholar 

  22. Quint, J., Viallard, A.: The relaxation field for the general case of electrolyte mixtures. J. Solution Chem. 7, 137–153 (1978)

    Article  CAS  Google Scholar 

  23. Quint, J., Viallard, A.: The electrophoretic effect for the case of electrolyte mixtures. J. Solution Chem. 7, 525–531 (1978)

    Article  CAS  Google Scholar 

  24. Quint, J., Viallard, A.: Electrical conductance of electrolyte mixtures of any type. J. Solution Chem. 7, 533–548 (1978)

    Article  CAS  Google Scholar 

  25. Bončina, M., Apelblat, A., Rogac, M.B.: Dilute aqueous solutions with formate ions: a conductometric study. J. Chem. Eng. Data 55, 1951–1957 (2010)

    Article  Google Scholar 

  26. Apelblat, A.: Dissociation constants and limiting conductances of organic acids in water. J. Mol. Liq. 95, 99–145 (2002)

    Article  CAS  Google Scholar 

  27. Wang, P.Y., Liu, J., Wu, L.K., Zhao, Y.: Liquid–liquid equilibria of aqueous biphasic systems containing selected imidazolium ionic liquids and salts. J. Chem. Eng. Data 52, 2026–2031 (2007)

    Article  Google Scholar 

  28. Tiago, G., Restolho, J., Forte, A., Colaço, R., Branco, L.C., Saramago, B.: Novel ionic liquids for interfacial and tribological applications. Colloids Surf. A 472, 1–8 (2015)

    Article  CAS  Google Scholar 

  29. Papaiconomou, N., Salminen, J., Lee, J.M., Prausnitz, J.M.: Physicochemical properties of hydrophobic ionic liquids containing 1-octylpyridinium, 1-octyl-2-methylpyridinium, or 1-octyl-4-methylpyridinium cations. J. Chem. Eng. Data 52, 833–840 (2007)

    Article  CAS  Google Scholar 

  30. Stark, A., Ott, D., Kralisch, D., Kreisel, G., Ondruschka, B.: Ionic liquids and green chemistry: a lab experiment. J. Chem. Educ. 87, 196–201 (2010)

    Article  CAS  Google Scholar 

  31. Barthel, J., Krienke, H., Kunz, W.: Physical Chemistry of Electrolyte Solutions—Modern Aspects. Springer, New York (1998)

    Google Scholar 

  32. Bešter-Rogač, M., Neueder, R., Barthel, J., Apelblat, A.: Conductivity studies of aqueous solutions of stereoisomers of tartaric acids and tartrates. Part II: d-, L-, and meso-tartaric acids. J. Solution Chem. 26, 537–550 (1997)

    Article  Google Scholar 

  33. Tsurko, E.N., Neueder, R., Barthel, J., Apelblat, A.: Conductivity of phosphoric acid, sodium, potassium, and ammonium phosphates in dilute aqueous solutions from 278.15 K to 308.15 K. J. Solution Chem. 28, 973–999 (1999)

    Article  CAS  Google Scholar 

  34. Apelblat, A., Bešter-Rogač, M., Barthel, J., Neueder, R.: Conductivity studies of aqueous solutions of stereoisomers of tartaric acids and tartrates. Part II: D-, L-, and meso-tartaric acids. J. Phys. Chem. B 110, 8893–8906 (2006)

    Article  CAS  Google Scholar 

  35. Kielland, J.: Individual activity coefficients of ions in aqueous solutions. J. Am. Chem. Soc. 59, 1675–1678 (1937)

    Article  CAS  Google Scholar 

  36. Harris, D.C.: Quantitative Chemical Analysis. Freeman, San Francisco (1982)

    Google Scholar 

  37. Apelblat, A.: An analysis of the conductances of aqueous malonic acid. J. Mol. Liq. 73, 49–59 (1997)

    Article  Google Scholar 

  38. Shehata, H.A., Abdelbary, H.M., Baker, M.F., Hafiz, M.H., Emara, M.M.: Ionic association constants of MnCl2 and NiCl2 in various mixed aqueous organic solvents using conductometric technique. J. Fac. Educ. 19, 451–461 (1994)

    Google Scholar 

  39. Pura, S.: Ion association of anhydrous ferric chloride in primary alcohols at different temperatures. J. Mol. Liq. 136, 64–70 (2007)

    Article  CAS  Google Scholar 

  40. Brummer, S.B., Hills, G.J.: Kinetics of ionic conductance. Part 1—energies of activation and the constant volume principle. Trans. Faraday Soc. 57, 1816–1822 (1961)

    Article  CAS  Google Scholar 

  41. Apelblat, A., Bathel, J.: Conductance studies on aqueous citric acid. Z. Naturforsch. 46A, 131–140 (1990)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank financial support from the graduate council of the University of Tabriz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemayat Shekaari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 237 kb)

Appendix

Appendix

The coefficients of the Quint—Viallard conductance equation were calculated as follows [24, 41]:

$$ S_{{}} = \alpha \varLambda^{0} + \beta_{{}} $$
(13)
$$ E = E_{1} \varLambda^{0} - E_{2} $$
(14)
$$ J_{1} = \sigma_{1} \varLambda^{0} + \sigma_{2} $$
(15)
$$ J_{2} = \sigma_{3} \varLambda^{0} + \sigma_{4} $$
(16)
$$ \alpha_{{}} = \frac{{2.8012 \times 10^{6} }}{{(DT)^{3/2} }}\left| {z_{1} } \right|\left| {z_{2} } \right|\frac{q}{1 + \sqrt q }, \, q = 1/2 $$
(17)
$$ \beta_{{}} = \frac{41.243}{{\eta (DT)^{1/2} }}\left| z \right| $$
(18)
$$ E_{1} = \frac{{5.8851 \times 10^{12} }}{{(DT)^{3} }}z_{1}^{2} z_{2}^{2} q $$
(19)
$$ E_{2} = \frac{{4.3324 \times 10^{7} }}{{\eta (DT)^{2} }}\left| {z_{1} } \right|\left| {z_{2} } \right|Q_{1} $$
(20)
$$ Q{}_{1} = \left\{ {\frac{{\left( {\left| {z_{1} } \right| + \left| {z_{2} } \right|} \right)q\lambda_{j}^{0} }}{{\lambda_{1}^{0} + \lambda_{2}^{0} }} + q\left| {z_{j} } \right| - \frac{{2z_{j} \left| {z_{j} } \right|(z_{1} + z_{2} )}}{{z_{1} z_{2} }}} \right\} $$
(21)
$$ \sigma_{1} = \frac{{1.17702 \times 10^{13} }}{{(DT)^{3} }}z_{1}^{2} z_{2}^{2} Q_{2} $$
(22)
$$ Q_{2} = \gamma + \ln \xi + R_{1} - R_{2} + R_{3} $$
(23)
$$ \xi = 5.0291 \times 19^{9} {a \mathord{\left/ {\vphantom {a {(DT)^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}} }}} \right. \kern-0pt} {(DT)^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}} }}, \, \gamma = 0.5772156649 $$
(24)
$$ R_{1} = \frac{{(1 - q)^{3} \ln (1 + \sqrt q ) + q(q^{2} - q + 2)\ln (2 + \sqrt q ) + 2q(1 - 2q)\ln (1 + 2\sqrt q )}}{2q(1 - q)} $$
(25)
$$ R_{2} = \frac{{6 + 15\sqrt q + 30q + 23q^{3/2} - 6q^{2} }}{{12\sqrt q (1 + \sqrt q )^{2} }} $$
(26)
$$ R_{3} = \frac{{2z_{1}^{2} z_{2}^{2} b^{2} + 2\left| {z_{1} } \right|\left| {z_{2} } \right|b - 1}}{{\left| {z_{1} } \right|^{3} \left| {z_{2} } \right|^{3} b^{3} }} $$
(27)
$$ b = \frac{{1.6671 \times 10^{ - 3} }}{aDT} $$
(28)
$$ \sigma_{2j} = \frac{{8.6648 \times 10^{7} }}{{\eta (DT)^{2} }}\left| {z_{1} } \right|\left| {z_{2} } \right|qQ_{3} $$
(29)
$$ Q_{3} = \left\{ { - \frac{{\left( {\left| {z_{1} } \right| + \left| {z_{2} } \right|} \right)\lambda_{j}^{0} Q_{4} }}{{\lambda_{1}^{0} + \lambda_{2}^{0} }} - \left( {\left| {z_{j} } \right| + \frac{{2z_{j} \left| {z_{j} } \right|(z_{1} + z_{2} )}}{{q\left| {z_{1} } \right|\left| {z_{2} } \right|}}} \right)Q_{5} + \left| {z_{j} } \right|Q_{6} } \right\} $$
(30)
$$ Q_{4} = \gamma + \ln \xi + \frac{2}{{3\left| {z_{1} } \right|\left| {z_{2} } \right|b}} + R_{4} - R_{5} $$
(31)
$$ Q_{5} = \gamma + \ln 2 + \ln \xi $$
(32)
$$ Q_{6} = - \ln 2 + \frac{3}{2} + \frac{1}{{z_{1}^{2} z_{2}^{2} b^{2} }} + \frac{8 - 3q}{{2qb\left| {z_{1} } \right|\left| {z_{2} } \right|}} + R_{6} $$
(33)
$$ R_{4} = \frac{{(1 - q)^{2} \ln (1 + \sqrt q ) - q(q - 4)\ln (2 + \sqrt q )}}{2q} $$
(34)
$$ R_{5} = \frac{6 + 13\sqrt q - 6q}{12\sqrt q } $$
(35)
$$ R_{6} = \frac{(1 + q)\ln (1 + \sqrt q ) - 2q\ln 2 - \sqrt q (1 - \sqrt q )}{(1 - q)} $$
(36)
$$ \sigma_{3} = \frac{{16E_{1} E_{2} }}{\beta }\frac{{0.8047b^{2} + 2.2137b + 1.9024}}{{b^{3} }} $$
(37)
$$ \sigma_{4} = 2E_{1} \beta \frac{8.5 - 2.8383b}{{b^{2} }} $$
(38)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekaari, H., Mehrdad, A. & Noorani, N. Dissociation Behavior of l(+)-Lactic Acid in Aqueous Solutions of (1-Alkyl-4-methylpyridinium bromide + Poly (ethyleneglycol)) at T = (288.15–318.15) K. J Solution Chem 47, 26–46 (2018). https://doi.org/10.1007/s10953-017-0702-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0702-z

Keywords

Navigation