Skip to main content
Log in

Molecular Dynamics Study on Carbon Dioxide Absorbed Potassium Glycinate Aqueous Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulations have been performed to investigate the effects on structure, transport properties, and dynamical properties in the potassium glycinate aqueous solution caused by carbon dioxide (CO2) absorption. The optimized structure and charges of constituents of the solution, such as the glycine zwitterion, have been determined by Gaussian09 using the density functional theory. The obtained pair distribution functions, g ij (r)’s, show the significant distribution difference of bicarbonate ion, \({\text{HCO}}_{3}^{ - }\), around the glycine anion and glycine zwitterion. The shear viscosity and diffusion coefficient obtained by MD show different CO2 concentration dependences. The frequency dependent diffusion coefficient D i (ν) for N and C in glycine ions are mainly influenced by the cage effect of surrounding water molecules, whereas D i (ν) for H show the characteristic vibration due to the structure difference of the glycine ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tans, P., Keeling, R.: Trends in Atmospheric Carbon Dioxide. NOAA Earth System Research Laboratory, Boulder. http://www.esrl.noaa.gov/gmd/ccgg/trends/ (2017). Accessed 22 May 2017

  2. Kohl, A.L., Nielsen, R.B.: Gas Purification, 5th edn. Gulf Pub. Co., Houston (1997)

    Google Scholar 

  3. Karadas, F., Atilhan, M., Aparicio, S.: Review on the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening. Energy Fuels 24, 5817–5828 (2010)

    Article  CAS  Google Scholar 

  4. Zhang, X., Zhang, X., Dong, H., Zhao, Z., Zhang, S., Huanga, Y.: Carbon capture with ionic liquids: overview and progress. Energy Environ. Sci. 5, 6668–6681 (2012)

    Article  CAS  Google Scholar 

  5. Muñoz, D.M., Portugal, A.F., Lozano, A.E., de la Campa, J.G., de Abajo, J.: New liquid absorbents for the removal of CO2 from gas mixtures. Energy Environ. Sci. 2, 883–891 (2009)

    Article  Google Scholar 

  6. Portugal, A.F., Derks, P.W.J., Versteeg, G.F., Magalhães, F.D., Mendes, A.: Characterization of potassium glycinate for carbon dioxide absorption purposes. Chem. Eng. Sci. 62, 6534–6547 (2007)

    Article  CAS  Google Scholar 

  7. Portugal, A.F., Sousa, J.M., Magalhães, F.D., Mendes, A.: Solubility of carbon dioxide in aqueous solutions of amino acid salts. Chem. Eng. Sci. 64, 1993–2002 (2009)

    Article  CAS  Google Scholar 

  8. Guo, D., Thee, H., Tan, C.Y., Chen, J., Fei, W., Kentish, S., Stevens, G.W., da Silva, G.: Amino acids as carbon capture solvents: chemical kinetics and mechanism of the glycine + CO2 reaction. Energy Fuels 27, 3898–3904 (2013)

    Article  CAS  Google Scholar 

  9. Aldenkamp, N., Huttenhuis, P., P-van Elk, N., Hamborg, E.S., Versteeg, G.F.: Solubility of carbon dioxide in aqueous potassium salts of glycine and taurine at absorber and desorber conditions. J. Chem. Eng. Data 59, 3397–3406 (2014)

    Article  CAS  Google Scholar 

  10. Shaikh, M.S., Shariff, A.M., Bustam, M.A., Murshid, G.: Physical properties of aqueous solutions of potassium carbonate + glycine as a solvent for carbon dioxide removal. J. Serb. Chem. Soc. 79, 719–727 (2014)

    Article  CAS  Google Scholar 

  11. Lee, S., Choi, S.-I., Maken, S., Song, H.-J., Shin, H.-C., Park, J.-W., Jang, K.-R., Kim, J.-H.: Physical properties of aqueous sodium glycinate solution as an absorbent for carbon dioxide removal. J. Chem. Eng. Data 50, 1773–1776 (2005)

    Article  CAS  Google Scholar 

  12. Kumar, P.S., Hogendoorn, J.A., Versteeg, G.F., Feron, P.H.M.: Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine. AIChE J. 49, 203–213 (2003)

    Article  CAS  Google Scholar 

  13. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, E.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09 ed., Gaussian, Inc.: Wallingford (2009)

  14. da Silva, E.F., Svendsen, H.F.: Computational chemistry study of reactions, equilibrium and kinetics of chemical CO2 absorption. Int. J. Greenh. Gas Control 1, 151–157 (2007)

    Article  Google Scholar 

  15. Matsunaga, S., Tamaki, S.: Ionic conduction in electrolyte solution. J. Solution Chem. 43, 1771–1790 (2014)

    Article  CAS  Google Scholar 

  16. Matsunaga, S.: Effect of greenhouse gases dissolved in seawater. Int. J. Mol. Sci. 17, 45–63 (2016)

    Article  Google Scholar 

  17. Matsunaga, S.: Effect of sulfate anion on the structure and transport properties of seawater: a molecular simulation study. J. Mol. Liq. 226, 90–95 (2017)

    Article  CAS  Google Scholar 

  18. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983)

    Article  CAS  Google Scholar 

  19. Mahoney, M.W., Jorgensen, W.L.: A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J. Chem. Phys. 112, 8910–8922 (2000)

    Article  CAS  Google Scholar 

  20. Peng, Z., Ewig, C.S., Hwang, M.-J., Waldman, M., Hagler, A.T.: Derivation of class II force fields. 4. van der Waals parameters of alkali metal cations and halide anions. J. Phys. Chem. A 101, 7243–7252 (1997)

    Article  CAS  Google Scholar 

  21. Mayo, S.L., Olafson, B.D., Goddard III, W.A.: DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990)

    Article  CAS  Google Scholar 

  22. Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard III, W.A., Skiff, W.M.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)

    Article  CAS  Google Scholar 

  23. FUJITSU Technical Computing Solution SCIGRESS: http://www.fujitsu.com/global/solutions/business-technology/tc/sol/scigress/index.html. Accessed 22 May 2017

  24. Hansen, J.-P., McDonald, I.R.: Theory of Simple Liquids, 2nd edn. Academic Press, London (1986)

    Google Scholar 

  25. Civera, M., Fornili, A., Sironi, M., Fornili, S.L.: Molecular dynamics simulation of aqueous solutions of glycine betaine. Chem. Phys. Lett. 367, 238–244 (2003)

    Article  CAS  Google Scholar 

  26. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1987)

    Google Scholar 

  27. Bedrov, D., Smith, G.D., Sewell, T.D.: Temperature-dependent shear viscosity coefficient of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX): a molecular dynamics simulation study. J. Chem. Phys. 112, 7203–7208 (2000)

    Article  CAS  Google Scholar 

  28. Yeh, In.-Chul.: Hummer, G.: system-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions. J. Phys. Chem. B 108, 15873–15879 (2004)

    Article  CAS  Google Scholar 

  29. Campo, M.G.: Molecular dynamics simulation of glycine zwitterion in aqueous solution. J. Chem. Phys. 125, 114511 (2006)

    Article  Google Scholar 

  30. Atkins, P.W.: Physical Chemistry, 4th edn. Oxford University Press, Oxford (1990)

    Google Scholar 

Download references

Acknowledgements

I would like to express my thanks to Professor S. Tamaki for his helpful comments and encouragement on this study. This study was supported by JSPS KAKENHI Grant Number 15K05136. Part of the results in this study was obtained using the supercomputing facilities at Research Institute for Information Technology, Kyushu University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeki Matsunaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsunaga, S. Molecular Dynamics Study on Carbon Dioxide Absorbed Potassium Glycinate Aqueous Solution. J Solution Chem 46, 2268–2280 (2017). https://doi.org/10.1007/s10953-017-0700-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0700-1

Keywords

Navigation