Skip to main content
Log in

Solution Chemistry of Arsenic Anions in the Presence of Metal Cations

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

A Publisher Correction to this article was published on 18 November 2017

This article has been updated

Abstract

The interaction of arsenic(V) and arsenic(III) oxyanions with metal cations was investigated by potentiometry under temperature and ionic strength conditions approaching those prevailing in natural waters. The selection includes the major metal cations and some other ions of high environmental relevance. Ionic pairs [M(AsVO4)], [M(HAsVO4)] and [M(H2AsIIIO3)]+ formation is suggested for all +2 metal cations, based on the potentiometric results. These ion-pairs between arsenic anions and other metal cations are hardly ever mentioned or taken into account when arsenic speciation in natural waters is considered. These results provide the basis for studying arsenic speciation in natural aquatic systems, on which environmental fate, bioavailability and toxicity of the element depend. Some extrapolations to the conditions of the natural waters are presented as well as some insights into the adsorption process onto hydrous oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 18 November 2017

    The original version of this article unfortunately contained a mistake in the last author's name. The co-author's name should be Eduardo Kremer instead of Eduardo Kremerv.

References

  1. Smedley, P.L., Kinniburgh, D.G.: A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17, 517–568 (2002)

    Article  CAS  Google Scholar 

  2. Wang, S., Mulligan, C.N.: A review of the source, behaviour and distribution of arsenic in natural waters. Sci. Total Environ. 366, 701–721 (2006)

    Article  CAS  Google Scholar 

  3. Mandal, B.K., Suzuki, K.T.: Arsenic round the world: a review. Talanta 58, 201–235 (2002)

    Article  CAS  Google Scholar 

  4. Nordstrom, D.K., Archer, D.G.: Arsenic thermodynamic data and environmental geochemistry and Foster, A.F.: spectroscopic investigations of arsenic species in solid phases. In: Welch, A.H., Stollenwerk, K.G. (eds.) Arsenic in Ground Water. Occurrence and Geochemistry. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  5. Sharma, V.K., Sohn, M.: Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ. Int. 35, 743–759 (2009)

    Article  CAS  Google Scholar 

  6. Cheng, H., Hu, Y., Luo, J., Xu, B., Zhao, J.: Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. J. Hazard. Mater. 165, 13–26 (2009)

    Article  CAS  Google Scholar 

  7. Bodek, I., Lyman, W.J., Feehl, W.F., Rosenblatt, D.H.: Environmental Inorganic Chemistry. Pergamon Press, New York (1988)

    Google Scholar 

  8. Kabata-Pendias, A., Pendias, H.: Trace elements in soils and plants. CRC Press, Boca Raton (2011)

    Google Scholar 

  9. Welch, A.H., Westjohn, D.B., Helsel, D.R., Wanty, R.B.: Arsenic in ground water of the united states: occurrence and geochemistry. Ground Water 38, 589–604 (2000)

    Article  CAS  Google Scholar 

  10. Nickson, R.T., McArthur, J.M., Ravenscroft, P., Burgess, W.G., Ahmed, K.M.: Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl. Geochem. 15, 403–413 (2000)

    Article  CAS  Google Scholar 

  11. Welch, A.H., Lico, M.S.: Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada. Appl. Geochem. 13, 521–539 (1988)

    Article  Google Scholar 

  12. Das, D., Samanta, G., Mandal, B.K., Chowdhury, T.R., Chanda, C.R., Chowdhury, P.P., Basu, G.K., Chakraborti, D.: Arsenic in groundwater in six districts of West Bengal, India. Environ. Geochem. Health 18, 5–15 (1996)

    Article  CAS  Google Scholar 

  13. Matisoff, G., Khourey, C.J., Hall, J.F., Varnes, A.W., Strain, W.H.: The nature and source of arsenic in northeastern Ohio groundwater. Ground Water 20, 446–456 (1982)

    Article  CAS  Google Scholar 

  14. McArthur, J.M., Banerjee, D.M., Hudson-Edwards, K.A., Mishra, R., Purohit, R., Ravenscroft, P., Cronin, A., Howarth, R.J., Chatterjee, A., Talukder, T., Lowry, D., Houghton, S., Chadha, D.K.: Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications. Appl. Geochem. 19, 1255–1293 (2004)

    Article  CAS  Google Scholar 

  15. Cherry, J.A., Shaikh, A.U., Tallman, D.E., Nicholson, R.V.: Arsenic as an indicator of redox conditions in groundwater. J. Hydrol. 43, 373–392 (1979)

    Article  CAS  Google Scholar 

  16. Sarmiento, A.M., Nieto, J.M., Casiot, C., Elbaz-Poulichet, F., Egal, M.: Inorganic arsenic speciation at river basin scales: the Tinto and Odiel rivers in the Iberian pyrite belt. Environ. Pollut. 157, 1202–1209 (2009)

    Article  CAS  Google Scholar 

  17. Loehr, T.M., Plane, R.A.: Raman spectra and structures of arsenious acid and arsenites in aqueous solution. Inorg. Chem. 7, 1708–1714 (1968)

    Article  CAS  Google Scholar 

  18. Zakaznova-Herzog, V.P., Seward, T.M., Suleimenov, O.M.: Arsenous acid ionization in aqueous solution from 25 to 300 °C. Geochim. Cosmochim. Acta 70, 1928–1938 (2006)

    Article  CAS  Google Scholar 

  19. Yan, X.P., Kerrich, R., Hendry, M.J.: Distribution of arsenic(III), arsenic(V) and total inorganic arsenic in porewaters from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada. Geochim. Cosmochim. Acta 64, 2637–2648 (2000)

    Article  CAS  Google Scholar 

  20. Andreae, M.O.: Arsenic speciation in seawater and interstitial waters: the influence of biological–chemical interactions on the chemistry of a trace element. Limnol. Oceanogr. 24, 440–452 (1979)

    Article  CAS  Google Scholar 

  21. Eary, L.E., Schramke, J.A.: Rates of inorganic oxidation reactions involving dissolved oxygen. In: Melchior, D.C., Bassett, R.L. (eds.) Chemical Modeling in Aqueous Systems II, pp. 379–396. ACS Symposium Series, Washington (1990)

    Chapter  Google Scholar 

  22. Peterson, M.L., Carpenter, R.: Biogeochemical processes affecting total arsenic and arsenic species distribution in an intermittently anoxic fjord. Mar. Chem. 12, 295–321 (1983)

    Article  CAS  Google Scholar 

  23. Pettine, M., Camusso, M., Martinotti, W.: Dissolved and particulate transport of arsenic and chromium in the Po river (Italy). Sci. Total Environ. 119, 253–280 (1992)

    Article  CAS  Google Scholar 

  24. Johnson, D.L.: Bacterial reduction of arsenate in seawater. Nature 240, 44–45 (1972)

    Article  CAS  Google Scholar 

  25. Romic, Z., Habuda-Stanic, M., Kalajdzic, B., Kules, M.: Arsenic distribution concentration and speciation in groundwater of the Osijek area, eastern Croatia. Appl. Geochem. 26, 37–44 (2011)

    Article  CAS  Google Scholar 

  26. Ujevic, M., Duic, Z., Casiot, C., Sipos, L., Santo, V., Dadic, Z., Halamic, J.: Occurrence and geochemistry of arsenic in the groundwater of eastern Croatia. Appl. Geochem. 25, 1017–1029 (1982)

    Article  Google Scholar 

  27. Pierce, M.L., Moore, C.B.: Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res. 16, 1247–1253 (1982)

    Article  CAS  Google Scholar 

  28. Wilkie, J.A., Hering, J.G.: Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Coll. Surf. A 107, 97–110 (1996)

    Article  CAS  Google Scholar 

  29. Habuda-Stanić, M., Kalajdzic, B., Kuleš, M., Velic, N.: Arsenite and arsenate sorption by hydrous ferric oxide/polymeric material. Desalination 229, 1–9 (2008)

    Article  Google Scholar 

  30. Goldberg, S., Johnston, C.T.: Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J. Coll. Interfac. Sci. 234, 204–216 (2001)

    Article  CAS  Google Scholar 

  31. De Vitre, R., Belzile, N., Tessier, A.: Speciation and adsorption or arsenic on diagenetic iron oxyhydroxides. Limnol. Oceanogr. 36, 1480–1485 (1991)

    Article  Google Scholar 

  32. Sullivan, K.A., Aller, R.C.: Diagenetic cycling of arsenic in Amazon shelf sediments. Geochim. Cosmochim. Acta 60, 1465–1477 (1996)

    Article  CAS  Google Scholar 

  33. Livesey, N.T., Huang, P.M.: X-ray absorption spectroscopic investigation of arsenite and arsenate adsorption at the aluminum oxide–water interface. Soil Sci. 131, 80–88 (1981)

    Article  Google Scholar 

  34. Widerlund, A., Ingri, J.: Early diagenesis of arsenic in sediments of the Kalix River estuary, northern Sweden. Chem. Geol. 125, 185–196 (1995)

    Article  CAS  Google Scholar 

  35. Belzile, N.: The fate of arsenic in sediments of the Laurentian Trough. Geochim. Cosmochim. Ac. 52, 2293–2302 (1988)

    Article  CAS  Google Scholar 

  36. Fabian, D., Zhou, Z., Wehrli, B., Friedl, G.: Diagenetic cycling of arsenic in the sediments of eutrophic Baldeggersee, Switzerland. Appl. Geochem. 18, 1497–1506 (2003)

    Article  CAS  Google Scholar 

  37. Stability Constants Database. IUPAC (2007)

  38. May, P.M., Murray, K.: A joint expert speciation system–I. Raison d’être. Talanta 38, 1409–1417 (1991)

    Article  CAS  Google Scholar 

  39. Glaskova, O., Azaroual, M., Piantone, P.: Arsenic behaviour in subsurface hydrogeochemicai systems—a critical review of thermodynamic data for minerals and aqueous species of arsenic. BRGM Report R 40629 (1999)

  40. Cornelis, G., Poppe, S., Van Gerven, T., Van den Broeck, E., Ceulemans, M., Vandecasteele, C.: Geochemical modelling of arsenic and selenium leaching in alkaline water treatment sludge from the production of non-ferrous metals. J. Hazard. Mater. 159, 271–279 (2008)

    Article  CAS  Google Scholar 

  41. Bothe, J.V., Brown, P.W.: The stabilities of calcium arsenates at 23 ± 1 °C. J. Hazard. Mater. B69, 197–207 (1999)

    Article  Google Scholar 

  42. Nordstrom, D.K., Alpers, C.N., Ptacek, C.J., Blowes, D.W.: Negative pH and extremely acidic mine waters from Iron Mountain, California. Environ. Sci. Tech. 34, 254–258 (2000)

    Article  CAS  Google Scholar 

  43. Torres, J., Tissot, F., Santos, P., Ferrari, C., Kremer, C., Kremer, E.: Interactions of W(VI) and Mo(VI) oxyanions with metal cations in natural waters. J. Solution Chem. 45, 1598–1611 (2016)

    Article  CAS  Google Scholar 

  44. Gans, P., O’Sullivan, B.: GLEE, a new computer program for glass electrode calibration. Talanta 51, 33–37 (2000)

    Article  CAS  Google Scholar 

  45. Gans, P., Sabatini, A., Vacca, A.: Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43, 1739–1753 (1996)

    Article  CAS  Google Scholar 

  46. Alderighi, L., Gans, P., Ienco, A., Peters, D., Sabatini, A., Vacca, A.: Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 184, 311–318 (1999)

    Article  CAS  Google Scholar 

  47. Pokrovski, G., Gout, R., Schott, J., Zotov, A., Harrichoury, J.C.: Thermodynamic properties and stoichiometry of As(III) hydroxide complexes at hydrothermal conditions. Geochim. Cosmochim. Acta 60, 737 (1996)

    Article  CAS  Google Scholar 

  48. Gout, R., Pokrovski, G., Schott, J., Zwick, A.: Raman spectroscopic study of arsenic speciation in aqueous solutions up to 275 °C. J. Raman Spectrosc. 28, 725–730 (1997)

    Article  CAS  Google Scholar 

  49. Mondal, P., Majumder, C.B., Mohanty, B.: Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J. Hazard. Mater. B137, 464–479 (2006)

    Article  Google Scholar 

  50. Leybourne, M.I., Cameron, E.M.: Source, transport, and fate of rhenium, selenium, molybdenum, arsenic, and copper in groundwater associated with porphyry–Cu deposits, Atacama Desert, Chile. Chem. Geol. 247, 208–228 (2008)

    Article  CAS  Google Scholar 

  51. Lenoble, V., Omanović, D., Garnier, C., Mounier, S., Đonlagić, N., Le Poupon, C., Pižeta, I.: Distribution and chemical speciation of arsenic and heavy metals in highly contaminated waters used for health care purposes (Srebrenica, Bosnia and Herzegovina). Sci. Total Environ. 443, 420–428 (2013)

    Article  CAS  Google Scholar 

  52. Hsia, T.H., Lo, S.L., Lin, C.F., Lee, D.Y.: Characterization of arsenate adsorption on hydrous iron oxide using chemical and physical methods. Coll. Surface A 85, 1–7 (1994)

    Article  CAS  Google Scholar 

  53. Myneni, S.C.B., Traina, S.J., Waychunas, G.A., Logan, T.J.: Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions, solids, and at mineral–water interfaces. Geochim. Cosmochim. Acta 62, 3285–3300 (1998)

    Article  CAS  Google Scholar 

  54. Suarez, D.L., Goldberg, S., Su, C.: Evaluation of oxyanion adsorption mechanisms on oxides using FTIR spectroscopy and electrophoretic mobility. In: Sparks, D.L., Grundl, T.J. (eds.) Mineral–Water Interfacial Reactions, pp. 136–168. American Chemical Society Symposium Series, Washington (1998)

    Google Scholar 

  55. Sjöstedt, C., Wällstedt, T., Gustafsson, J.P., Borg, H.: Speciation of aluminum, arsenic and molybdenum in excessively limed lakes. Sci. Total Environ. 407, 5119–5127 (2009)

    Article  Google Scholar 

  56. Winkel, L., Berg, M., Stengel, C., Rosenberg, T.: Hydrogeological survey assessing arsenic and other groundwater contaminants in the lowlands of Sumatra, Indonesia. Appl. Geochem. 23, 3019–3028 (2008)

    Article  CAS  Google Scholar 

  57. Meng, X., Bang, S., Korfiatis, G.P.: Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride. Water Res. 34, 1255–1261 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the ANII Uruguay under Grant FCE 2011_1_6491 and CSIC Uruguay under Grant Programa de Apoyo a Grupos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Torres.

Additional information

The original version of this article was revised: The typo in the last author name has been corrected.

A correction to this article is available online at https://doi.org/10.1007/s10953-017-0701-0.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, J., Santos, P., Ferrari, C. et al. Solution Chemistry of Arsenic Anions in the Presence of Metal Cations. J Solution Chem 46, 2231–2247 (2017). https://doi.org/10.1007/s10953-017-0699-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0699-3

Keywords

Navigation