Skip to main content
Log in

Carbazole-Based Mono and Bis-styryl NLOphores: Structure Property Correlations

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A detailed study of linear and nonlinear optical (NLO) properties obtained by spectroscopy and DFT computations of carbazole-based D-π-A (mono) and A-π-D-π-A (bis) extended styryl dyes is presented. Four different DFT functionals, B3LYP, MO6, BHandHLYP, and CAM-B3LYP are used for computations. The structure–property relationship is examined by correlating bond length alternation/bond order alternation with NLO properties of the dyes. The bis-carbazole styryl dyes possess a higher second-order hyperpolarizability (β) than the mono-carbazole styryl dyes. An increase in the polarity of the environment causes an increase in the first-order hyperpolarizability (β CT or β 0) and second-order hyperpolarizability (γ) of the mono- and bis-carbazole styryl compounds. The NLO properties calculated by the CAM-B3LYP and BHandHLYP functionals show good agreement with the spectroscopic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mysliwiec, J., Szukalski, A., Sznitko, L., Miniewicz, A., Haupa, K., Zygadlo, K., Matczyszyn, K., Olesiak-Banska, J., Samoc, M.: Synthesis, optical and nonlinear optical properties of new pyrazoline derivatives. Dye. Pigment. 102, 63–70 (2014)

    Article  CAS  Google Scholar 

  2. Clays, K., Coe, B.J.: Design strategies versus limiting theory for engineering large second-order nonlinear optical polarizabilities in charged organic molecules. Chem. Mater. 15, 642–648 (2003)

    Article  CAS  Google Scholar 

  3. Sainudeen, Z., Ray, P.C.: Nonlinear optical properties of zwitterionic merocyanine aggregates: role of intermolecular interaction and solvent polarity. J. Phys. Chem. A 109, 9095–9103 (2005)

    Article  CAS  Google Scholar 

  4. Li, Y., Li, J., Su, R., Cui, J.: Nonlinear optical properties of dihydrobenzothiazolylidene and dihydroquinoinylidene compounds. Opt. Mater. (Amst.) 36, 437–443 (2013)

    Article  CAS  Google Scholar 

  5. Rajendran, R., Freeda, T.H., Kalasekar, U.L., Peruma, R.N.: Synthesis, crystal growth and characterization of organic NLO material: M-nitroacetanilide. Adv. Mater. Phys. Chem. 1, 39–43 (2011)

    Article  CAS  Google Scholar 

  6. Barzoukas, M., Runser, C., Fort, A., Blanchard-Desce, M.: A two-state description of (hyper) polarizabilities of push-pull molecules based on a two-form model. Chem. Phys. Lett. 257, 531–537 (1996)

    Article  CAS  Google Scholar 

  7. Chen, L., Zhong, Q., Cui, Y., Qian, G., Wang, M.: Preparation and nonlinear optical properties of hybrid sol-gel films doped with triphenylamino-substituted chromophores. Dye. Pigment. 76, 195–201 (2008)

    Article  Google Scholar 

  8. Xu, H., Zhang, M., Zhang, A., Deng, G., Si, P., Huang, H., Peng, C., Fu, M., Liu, J., Qiu, L., Zhen, Z., Bo, S., Liu, X.: Novel second-order nonlinear optical chromophores containing multi-heteroatoms in donor moiety: design, synthesis, DFT studies and electro-optic activities. Dye. Pigment. 102, 142–149 (2014)

    Article  CAS  Google Scholar 

  9. Coe, B.J., Jones, L.A., Harris, J.A., Brunschwig, B.S., Asselberghs, I., Clays, K., Persoons, A., Garín, J., Orduna, J.: Syntheses and spectroscopic and quadratic nonlinear optical properties of extended dipolar complexes with ruthenium(II) ammine electron donor and N-methylpyridinium acceptor groups. J. Am. Chem. Soc. 126, 3880–3891 (2004)

    Article  CAS  Google Scholar 

  10. Barsella, A., Yalçın, E., Achelle, S., Bayrak, Y., Seferog, N., Seferog, Z.: Styryl-based NLO chromophores: synthesis, spectroscopic properties, and theoretical calculations. Tetrahedron Lett. 56, 2586–2589 (2015)

    Article  Google Scholar 

  11. Sworakowski, J., Lipiński, J., Ziółek, Ł., Palewska, K., Nešpůrek, S.: Solvatochromism of a zwitterionic benzimidazole-based pyridinium betaine dye: UV − Vis spectroscopic measurements and quantum-chemical calculations. J. Phys. Chem. 100, 12288–12294 (1996)

    Article  CAS  Google Scholar 

  12. Paley, M.S., Harris, J.M., Looser, H., Baumert, J.C., Bjorklund, G.C., Jundt, D., Twieg, R.J.: A solvatochromic method for determining second-order polarizabilities of organic molecules. J. Org. Chem. 54, 3774–3778 (1989)

    Article  CAS  Google Scholar 

  13. Wang, J.-N., Xu, H.-L., Sun, S.-L., Gao, T., Li, H.-Z., Li, H., Su, Z.-M.: An effective method for accurate prediction of the first hyperpolarizability of alkalides. J. Comput. Chem. 33, 231–236 (2012)

    Article  Google Scholar 

  14. Yang, M., Li, S., Ma, J., Jiang, Y.: An MP2 study of linear polarizabilities and second-order hyperpolarizabilities for centrosymmetric squaraines. Chem. Phys. Lett. 354, 316–323 (2002)

    Article  CAS  Google Scholar 

  15. Peach, M.J.G., Helgaker, T., Sałek, P., Keal, T.W., Lutnæs, O.B., Tozer, D.J., Handy, N.C.: Assessment of a Coulomb-attenuated exchange–correlation energy functional. Phys. Chem. Chem. Phys. 8, 558–562 (2006)

    Article  CAS  Google Scholar 

  16. Shimazaki, T., Nakajima, T.: Gaussian-based range-separation approach on Hartree-Fock exchange interaction and second-order perturbation theory. Chem. Phys. Lett. 647, 132–138 (2016)

    Article  CAS  Google Scholar 

  17. Pati, A.K., Gharpure, S.J., Mishra, A.K.: Substituted diphenyl butadiynes: a computational study of geometries and electronic transitions using DFT/TD-DFT. Phys. Chem. Chem. Phys. 16, 14015–14028 (2014)

    Article  CAS  Google Scholar 

  18. Gupta, V.D., Padalkar, V.S., Phatangare, K.R., Patil, V.S., Umape, P.G., Sekar, N.: The synthesis and photo-physical properties of extended styryl fluorescent derivatives of N-ethyl carbazole. Dye. Pigment. 88, 378–384 (2011)

    Article  CAS  Google Scholar 

  19. Gupta, V.D., Tathe, A.B., Padalkar, V.S., Patil, V.S., Phatangare, K.R., Umape, P.G., Ramasami, P., Sekar, N.: TDDFT investigation of the electronic structures and photophysical properties of fluorescent extended styryl push-pull chromophores containing carbazole unit. J. Fluoresc. 23, 1121–1138 (2013)

    Article  CAS  Google Scholar 

  20. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G E., Robb, M.A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, Jr. J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J.: Gaussian09 ed. Gaussian Inc., Wallingford, CT (2009)

    Google Scholar 

  21. Vidya, S., Ravikumar, C., Hubert Joe, I., Kumaradhas, P., Devipriya, B., Raju, K.: Vibrational spectra and structural studies of nonlinear optical crystal ammonium D, L-tartrate: a density functional theoretical approach. J. Raman Spectrosc. 42, 676–684 (2011)

    Article  CAS  Google Scholar 

  22. Abbotto, A., Beverina, L., Bradamante, S., Facchetti, A., Klein, C., Pagani, G.A., Redi-Abshiro, M., Wortmann, R.: A distinctive example of the cooperative interplay of structure and environment in tuning of intramolecular charge transfer in second-order nonlinear optical chromophores. Chem. A Eur. J. 9, 1991–2007 (2003)

    Article  CAS  Google Scholar 

  23. Momicchioli, F., Ponterini, G., Vanossi, D.: First- and second-order polarizabilities of simple merocyanines. An experimental and theoretical reassessment of the two-level model. J. Phys. Chem. A 112, 11861–11872 (2008)

    Article  CAS  Google Scholar 

  24. Carlotti, B., Flamini, R., Kikaš, I., Mazzucato, U., Spalletti, A.: Intramolecular charge transfer, solvatochromism and hyperpolarizability of compounds bearing ethenylene or ethynylene bridges. Chem. Phys. 407, 9–19 (2012)

    Article  CAS  Google Scholar 

  25. Margar, S.N., Sekar, N.: Nonlinear optical properties of curcumin: solvatochromism-based approach and computational study. Mol. Phys. 114, 1867–1879 (2016)

    Article  CAS  Google Scholar 

  26. Oudar, J.L., Chemla, D.S.: Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J. Chem. Phys. 66, 2664–2668 (1977)

    Article  CAS  Google Scholar 

  27. Champagne, B., Mennucci, B., Cossi, M., Cammi, R., Tomasi, J.: An ab initio time-dependent Hartree Fock study of solvent effects on the polarizability and second hyperpolarizability of polyacetylene chains within the polarizable continuum model. Chem. Phys. 238, 153–163 (1998)

    Article  CAS  Google Scholar 

  28. Isborn, C.M., Leclercq, A., Vila, F.D., Dalton, L.R., Brédas, J.L., Eichinger, B.E., Robinson, B.H.: Comparison of static first hyperpolarizabilities calculated with various quantum mechanical methods. J. Phys. Chem. A 111, 1319–1327 (2007)

    Article  CAS  Google Scholar 

  29. Jenekhe, S.A., Osaheni, J.A., Meth, J.S., Vanherzeele, H.: Nonlinear optical properties of poly(p-phenylenebenzobisoxazole). Chem. Mater. 4, 683–687 (1992)

    Article  CAS  Google Scholar 

  30. Benassi, E., Egidi, F., Barone, V.: General strategy for computing nonlinear optical properties of large neutral and cationic organic chromophores in solution. J. Phys. Chem. B. 119, 3155–3173 (2015)

    Article  CAS  Google Scholar 

  31. Egidi, F., Giovannini, T., Piccardo, M., Bloino, J., Cappelli, C., Barone, V.: Stereoelectronic, vibrational, and environmental contributions to polarizabilities of large molecular systems: a feasible anharmonic protocol. J Chem Theor. Comput. 10, 2456–2464 (2014)

    Article  CAS  Google Scholar 

  32. Taylor, P., Garza, A.J., Osman, O.I., Wazzan, N.A., Khan, S.B., Scuseria, G.E.: Molecular physics: an international journal at the interface between chemistry and physics prediction of the linear and nonlinear optical properties of tetrahydronaphthalone derivatives via long-range corrected hybrid functionals. Mol. Phys. 112, 3165–3172 (2014)

    Article  Google Scholar 

  33. Bourhill, G., Bredas, J.-L., Cheng, L., Marder, S.R., Meyers, F., Perry, J.W., Tiemann, B.G.: Experimental demonstration of the dependence of the first hyperpolarizability of donor-acceptor-substituted polyenes on the ground-state polarization and bond length alternation. J. Am. Chem. Soc. 116, 2619–2620 (1994)

    Article  CAS  Google Scholar 

  34. Gieseking, R.L., Risko, C., Brédas, J.L.: Distinguishing the effects of bond-length alternation versus bond-order alternation on the nonlinear optical properties of conjugated chromophores. J. Phys. Chem. Lett. 6(12), 2158–2162 (2015)

    Article  CAS  Google Scholar 

  35. Thompson, W.H., Blanchard-Desce, M., Hynes, J.T.: Two valence bond state model for molecular nonlinear optical properties. Nonequilibrium solvation formulation. J. Phys. Chem. A 102, 7712–7722 (1998)

    Article  CAS  Google Scholar 

  36. Lipiński, J., Bartkowiak, W.: Conformation and solvent dependence of the first and second molecular hyperpolarizabilities of charge-transfer chromophores. Quantum-chemical calculations. Chem. Phys. 245, 263–276 (1999)

    Article  Google Scholar 

  37. Squitieri, E., Paz, J.L., Hernandez, A.J.: Simple parameter-dependent relations for the maximum value of the optical activity of push–pull molecules in solution. Mol. Phys. 101, 2279–2284 (2003)

    Article  CAS  Google Scholar 

  38. Painelli, A., Terenziani, F.: A non-perturbative approach to solvatochromic shifts of push–pull chromophores. Chem. Phys. Lett. 312, 211–220 (1999)

    Article  CAS  Google Scholar 

  39. Albert, I.D.L., Marks, T.J., Ratner, M.A.: Rational design of molecules with large hyperpolarizabilities. Electric field, solvent polarity, and bond length alternation effects on merocyanine dye linear and nonlinear optical properties. J. Phys. Chem. 100, 9714–9725 (1996)

    Article  CAS  Google Scholar 

  40. Mikkelsen, K.V., Sylvester Hvid, K.O.: Molecular response method for solvated molecules in nonequilibrium solvation. J. Phys. Chem. 100, 9116–9126 (1996)

    Article  CAS  Google Scholar 

  41. Onsager, L.: Electric moments of molecules in liquids. J. Am. Chem. Soc. 58, 1486–1493 (1936)

    Article  CAS  Google Scholar 

  42. Wu, C., Tretiak, S., Chernyak, V.Y.: Excited states and optical response of a donor-acceptor substituted polyene: a TD-DFT study. Chem. Phys. Lett. 433, 305–311 (2007)

    Article  CAS  Google Scholar 

  43. Mardirossian, N., Parkhill, J.A., Head-Gordon, M.: Benchmark results for empirical post-GGA functionals: difficult exchange problems and independent tests. Phys. Chem. Chem. Phys. 13, 19325–19337 (2011)

    Article  CAS  Google Scholar 

  44. Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functiona. Theor. Chem. Acc. 120, 215–241 (2008)

    Article  CAS  Google Scholar 

  45. Walker, M., Harvey, A.J.A., Sen, A., Dessent, C.E.H.: Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. J. Phys. Chem. A 47(117), 12590–12600 (2013)

    Article  Google Scholar 

  46. Ferrighi, L., Frediani, L., Cappelli, C., Sałek, P., Ågren, H., Helgaker, T., Ruud, K.: Density-functional-theory study of the electric-field-induced second harmonic generation (EFISHG) of push–pull phenylpolyenes in solution. Chem. Phys. Lett. 425, 267–272 (2006)

    Article  CAS  Google Scholar 

  47. Peach, M.J.G., Cohen, A.J., Tozer, D.J.: Influence of Coulomb-attenuation on exchange–correlation functional quality. Phys. Chem. Chem. Phys. 8, 4543–4549 (2006)

    Article  CAS  Google Scholar 

  48. Dirk, C.W., Cheng, L.-T., Kuzyk, M.G.: A simplified three-level model describing the molecular third-order nonlinear optical susceptibility. Int. J. Quantum Chem. 43, 27–36 (1992)

    Article  CAS  Google Scholar 

  49. Lytel, R., Kuzyk, M.G.: Dressed quantum graphs with optical nonlinearities approaching the fundamental limit. J. Nonlinear Opt. Phys. Mater. 22, 1–39 (2013)

    Article  Google Scholar 

  50. Yang, M., Jiang, Y.: Structure-property correlation in static electronic second-order hyperpolarizabilities of centrosymmetric squaraines. Chem. Phys. 274, 121–130 (2001)

    Article  CAS  Google Scholar 

  51. Jacquemin, D., Mennucci, B., Adamo, C.: Excited-state calculations with TD-DFT: from benchmarks to simulations in complex environments. Phys. Chem. Chem. Phys. 13, 16987–16998 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowlegements

One of the author is thankful to the University Grants Commission, New Delhi (India) for the award of Junior and Senior Research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaiyan Sekar.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajeshirke, M., Katariya, S.B. & Sekar, N. Carbazole-Based Mono and Bis-styryl NLOphores: Structure Property Correlations. J Solution Chem 46, 2109–2129 (2017). https://doi.org/10.1007/s10953-017-0691-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0691-y

Keywords

Navigation