Skip to main content

Prediction the Solubility of Polycyclic Aromatic Hydrocarbons in Subcritical Water by Using the CPA EOS

Abstract

The aim of this work is to describe the solubility of polycyclic aromatic hydrocarbons (PAHs) in subcritical water. To achieve this goal, first, a literature survey of the solubilities of PAHs in water and of naphthalene in mixtures of water and ethanol was made. Subsequently, the cubic plus association equation of state was used to describe the solubility of PAHs in the liquid phase. For accurate descriptions of the aqueous solubility of PAHs, the binary interaction parameters and cross-association volumes were regressed based on the experimental solubilities at atmospheric pressure. These regressed parameters are then used for subcritical water. Additionally, these parameters have been determined for the (naphthalene + ethanol) binary system. These regressed parameters have then been applied to predict the solubility of naphthalene in (ethanol + water) solutions. The results of the present model prove that it can be successfully applied for reproducing the solubilities of PAHs in the aqueous phase.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

a :

Attractive parameter in the CPA EOS (J·m3·mol−2)

AAD :

Average absolute deviation (%)

assoc:

Association part of the CPA EOS

b :

Covolume in the EOS (m3·mol−1)

calc:

Calculated result

exp:

Experimental

g :

Simplified radial distribution function

i, j :

Components i and j

k ij :

Binary interaction parameter for the attractive parameter in the CPA EOS

N :

The number of experimental points

p :

Pressure (Pa)

phys:

Physical part of CPA EOS

R :

Ideal gas constant (J·mol−1·K−1)

T :

Temperature (K)

T r :

Reduced temperature

x i :

Mole fraction of each component i in each phase

X A :

Fraction of molecules not bonded at site A

Z :

Compressibility factor

β AiBi :

The association volume

ε :

The association energy (J·mol−1)

Δ:

Association strength

η :

Reduced density

ρ :

Mole density (mol·m−3)

References

  1. Mottahedin, P., Haghighi Asl, A., Khajenoori, M.: Extraction of curcumin and essential oil from Curcuma longa L. by subcritical water via response surface methodology. J. Food Process. Preserv. (2016). https://doi.org/10.1111/jfpp.13095

    Google Scholar 

  2. Oliveira, M.B., Oliveira, V.L., Coutinho, J.A.P., Queimada, A.J.: Thermodynamic modeling of the aqueous solubility of PAHs. Ind. Eng. Chem. Res. 48, 5530–5536 (2009)

    CAS  Article  Google Scholar 

  3. Teoh, W.H., Mammucari, R., Vieira de Melo, S.A.B., Foster, N.R.: Solubility and solubility modeling of polycyclic aromatic hydrocarbons in subcritical water. Ind. Eng. Chem. Res. 52, 5806–5814 (2013)

    CAS  Article  Google Scholar 

  4. Raman, A.S., Chiew, Y.C.: Solubility of polycyclic aromatic hydrocarbons in sub-critical water: a predictive approach using EoS/GE models. Fluid Phase Equilib. 399, 22–29 (2015)

    CAS  Article  Google Scholar 

  5. Teoh, W.H., Vieira de Melo, S.A.B., Mammucari, R., Foster, N.R.: Solubility and solubility modeling of polycyclic aromatic hydrocarbons in subcritical ethanol and water mixtures. Ind. Eng. Chem. Res. 53, 10238–10248 (2014)

    CAS  Article  Google Scholar 

  6. Escandell, J., Raspo, I., Neau, E.: Prediction of solid polycyclic aromatic hydrocarbons solubility in water with the NRTL–PR model. Fluid Phase Equilib. 362, 87–95 (2014)

    CAS  Article  Google Scholar 

  7. Kontogeorgis, G.M., Voutsas, E.C., Yakoumis, I.V., Tassios, D.P.: An equation of state for associating fluids. Ind. Eng. Chem. Res. 35, 4310–4318 (1996)

    CAS  Article  Google Scholar 

  8. Kontogeorgis, G.M., Yakoumis, I.V., Meijer, H., Hendriks, E., Moorwood, T.: Molticomponent phase equilibrium calculations for water–methanol–alkane mixtures. Fluid Phase Equilib. 158–160, 201–209 (1999)

    Article  Google Scholar 

  9. Oliveira, M.B., Marrucho, I.M., Coutinho, J.A.P., Queimada, A.J.: Surface tension of chain molecules through a combination of the gradient theory with the CPA EoS. Fluid Phase Equilib. 267, 83–91 (2008)

    CAS  Article  Google Scholar 

  10. Tsivintzelis, I., Kontogeorgis, G.M., Michelsen, M.L., Stenby, E.H.: Modeling phase equilibria for acid gas mixtures using the CPA equation of state. I. mixtures with H2S. AIChE J. 56, 2965–2982 (2010)

    CAS  Article  Google Scholar 

  11. Oliveira, M.B., Queimada, A.J., Kontogeorgis, G.M., Coutinho, J.A.P.: Evaluation of the CO2 behavior in binary mixtures with alkanes, alcohols, acids and esters using the cubic-plus- association equation of state. J. Supercrit. Fluids 55, 876–892 (2011)

    CAS  Article  Google Scholar 

  12. Tsivintzelis, I., Kontogeorgis, G.M., Michelsen, M.L., Stenby, E.H.: Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part II: binary mixtures with CO2. Fluid Phase Equilib. 306, 38–56 (2011)

    CAS  Article  Google Scholar 

  13. Abolala, M., Varaminian, F.: Modeling the solubility of light reservoir components, HCFCs and HFCs in water using the CPA and sPC-SAFT equations of state. J. Mol. Liq. 187, 359–367 (2013)

    CAS  Article  Google Scholar 

  14. Haghighi, H.: Phase equilibria modelling of petroleum reservoir fluids containing water, hydrate inhibitors and electrolyte solutions. Ph.D. Thesis, University of Heriot-Watt, Institute of Petroleum Engineering (2009)

  15. Brinkley, R.L., Gupta, R.B.: Hydrogen bonding with aromatic rings. AIChE J. 47, 948–953 (2001)

    CAS  Article  Google Scholar 

  16. http://www.scribd.com/doc/184782145/Critical-Properties-Density-Acentric-Factor-of-Gas#scribd

  17. Roux, M.V., Temprado, M., Chickos, J.S., Nagano, Y.: Critically evaluated thermochemical properties of polycyclic aromatic hydrocarbons. J. Phys. Chem. Ref. Data 37, 1855–1996 (2008)

    CAS  Article  Google Scholar 

  18. May, W.E., Waslk, S.P., Miller, M.M., Tewarl, Y.B., Brown-Thomas, J.M., Goldberg, R.N.: Solution thermodynamics of some slightly soluble hydrocarbons in water. J. Chem. Eng. Data 28, 197–200 (1983)

    CAS  Article  Google Scholar 

  19. Karasek, P., Planeta, J., Roth, M.: Solubility of solid polycyclic aromatic hydrocarbons in pressurized hot water at temperatures from 313 K to the melting point. J. Chem. Eng. Data 51, 616–622 (2006)

    CAS  Article  Google Scholar 

  20. Karasek, P., Planeta, J., Roth, M.: Aqueous solubility data for pressurized hot water extraction for solid heterocyclic analogs of anthracene, phenanthrene and fluorene. J. Chromatogr. A 1140, 195–204 (2007)

    CAS  Article  Google Scholar 

  21. Teoh, W.H., Mammucari, R., Vieira de Melo, S.A.B., Foster, N.R.: Solubility and solubility modeling of polycyclic aromatic hydrocarbons in subcritical water. Ind. Eng. Chem. Res. 52, 5806–5814 (2013)

    CAS  Article  Google Scholar 

  22. Karasek, P., Planeta, J., Roth, M.: Solubility of solid polycyclic aromatic hydrocarbons in pressurized hot water: correlation with pure component properties. Ind. Eng. Chem. Res. 45, 4454–4460 (2006)

    CAS  Article  Google Scholar 

  23. Kontogeorgis, G.M., Michelsen, M.L., Folas, G.K., Derawi, S., Solms, N., Stenby, E.H.: Ten years with the CPA (CUBIC-PLUS-ASSOCIATION) equation of state. Part 2. Cross-associating and multicomponent systems. Ind. Eng. Chem. Res. 45, 4869–4878 (2006)

    CAS  Article  Google Scholar 

  24. Bennett, D., Canady, W.J.: Thermodynamics of solution of naphthalene in various water–ethanol mixtures. J. Am. Chem. Soc. 106, 910–915 (1984)

    CAS  Article  Google Scholar 

  25. Mottahedin, P., Haghighi Asl, A., Lotfollahi, M.N.: Experimental and modeling investigation on the solubility of β-carotene in pure and ethanol-modified subcritical water. J. Mol Liquids. 237, 257–265 (2017)

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Haghighi Asl.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mottahedin, P., Asl, A.H. & Lotfollahi, M.N. Prediction the Solubility of Polycyclic Aromatic Hydrocarbons in Subcritical Water by Using the CPA EOS. J Solution Chem 46, 2191–2203 (2017). https://doi.org/10.1007/s10953-017-0690-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0690-z

Keywords

  • Polycyclic aromatic hydrocarbons
  • Subcritical water
  • CPA EOS
  • Solubility