Skip to main content
Log in

Synthesis, Spectroscopic and Computational Studies of Charge-Transfer Complexation Between 4-Aminoaniline and 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A charge-transfer (CT) complex that forms from the reaction of the donor 4-amino aniline (4AA) and the π-acceptor 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) have been studied and characterized experimentally and as well as theoretically at room temperature. The experimental work includes the application of UV–visible spectroscopy to identify the CT band of the CT-complex. The composition of the complex has been investigated using spectrophotometric titration and Job’s method of continuous variation and found to be 1:1. Furthermore, to calculate the formation constant and molar extinction coefficient, we have used the Benesi–Hildebrand equation. Infrared, 1H NMR, 13C NMR and mass spectral studies were used to characterize and confirm the formation of the CT-complex. The experimental studies were supported by quantum chemical simulations using density functional theory. The computational analysis of molecular geometry, Mulliken charges, and molecular electrostatic potential surfaces of reactants and complexes are helpful in assigning the CT route. The C=O bond length of DDQ increased upon complexation with 4AA. We have also observed that a substantial amount of charge has been transferred from 4AA to DDQ in the process of complexation. An excellent consistency has been achieved between experimental and theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gutmann, F., Johnson, C., Keyzer, H., Molnar, J.: Charge Transfer Complexes in Biological Systems. Marcel Dekker, New York (1997)

    Google Scholar 

  2. Kim, H.C., Theodore, N.D., Gadre, K.S., Mayer, J.W., Alford, T.L.: Investigation of thermal stability, phase formation, electrical, and micro structural properties of sputter-deposited titanium aluminide thin films. Thin Solid Films 460, 17–24 (2004)

    Article  CAS  Google Scholar 

  3. Arslan, M., Atak, F.B., Yakuphanoglu, F.: Synthesis and refractive index dispersion properties of the N, N ′, N ″-tri naphthyl methyl melamine–DDQ complex thin film. Opt. Mater. 29, 516–520 (2007)

    Article  CAS  Google Scholar 

  4. Vogtle, F.: Supramolecular Chemistry: An Introduction. Wiley, New York (1991)

    Google Scholar 

  5. Eychmüller, A., Rogach, A.L.: Chemistry and photophysics of thiol-stabilized II–VI semiconductor nanocrystals. Pure Appl. Chem. 72, 179–188 (2000)

    Article  Google Scholar 

  6. Dabestani, R., Reszka, K.J., Sigman, M.E.: Surface catalyzed electron transfer from polycyclic aromatic hydrocarbons (PAH) to methyl viologen di cation: evidence for ground-state charge transfer complex formation on silica gel. J. Photochem. Photobiol. A 17, 223–233 (1998)

    Article  Google Scholar 

  7. Pandeeswaran, M., Elango, K.P.: Spectroscopic studies on the interaction of cimetidine drug with biologically significant σ- and π-acceptors. Spectrochim. Acta A 75, 1462–1469 (2010)

    Article  CAS  Google Scholar 

  8. Flores, C.V., Keyzer, H., Varkey-Johnson, C., Young, K.L.: Charge transfer in biological systems. Org. Conduct. Appl. Phys. 691 (1994)

  9. Garcia, A., Elorza, J.M., Ugalde, J.M.: Density functional studies of the N.a σ charge-transfer complex between sulfur dioxide and chlorine monofluoride. J. Phys. Chem. A 102, 8974–8978 (1998)

    Article  CAS  Google Scholar 

  10. Garcia, A., Elorza, J.M., Ugalde, J.M.: Density functional studies of the n–σ charge-transfer complexes between NH3 and BrX (X = Cl, Br). J. Mol. Struct. (Theochem.) 501–502, 207–214 (2001)

    Google Scholar 

  11. Fomine, S., Fomina, L., Ogawa, T.: Charge transfer complexes between 4,40-disubstituted diphenyldiacetylenes: experimental and theoretical study. J. Mol. Struct. (Theochem.) 540, 123–130 (2001)

    Article  CAS  Google Scholar 

  12. Mullikan, R.S.: Molecular compounds and their spectra II. J. Am. Chem. Soc. 74, 811–824 (1952)

    Article  Google Scholar 

  13. Latajka, Z., Ratajczak, H., Orville-Thomas, W.: A study of the properties of charge-transfer complexes in systems composed of pyridine derivatives and chloride by the CNDO/2 method. J. Theor. Exp. Chem. 13, 389–391 (1978)

    Article  Google Scholar 

  14. Mullikan, R.S.: Structures of complexes formed by halogen molecules with aromatic and with oxygenated solvents. J. Am. Chem. Soc. 72, 600–608 (1950)

    Article  Google Scholar 

  15. Mullikan, R.S., Pearson, W.B.: Free-Radical Molecular Complexes. Wiley, NewYork (1969)

    Google Scholar 

  16. Foster, R.: Organic Charge Transfer Complexes. Academic Press, New York (1969)

    Google Scholar 

  17. Pandeeswaran, M., El-Mossalamy, E.H., Elango, K.P.: Spectroscopic studies on the dynamics of charge-transfer interaction of pantoprazole drug with DDQ and iodine. Spectroscopic studies on the interaction of cimetidine drug with biologically significant σ- and π-acceptors. Int. J. Chem. Kinet. 41, 787–799 (2009)

    Article  CAS  Google Scholar 

  18. Balraj, C., Satheshkumar, A., Ganesh, K., Elango, K.P.: Charge transfer complexes of quinones in aqueous medium: spectroscopic and theoretical studies on interaction of cimetidine with novel substituted 1,4-benzoquinones and its application in colorimetric sensing of anions. Spectrochim. Acta A 114, 256–266 (2013)

    Article  CAS  Google Scholar 

  19. Elqudaby, H.M., Mohamed, G.G., El-Din, G.M.G.: Analytical studies on the charge transfer complexes of loperamide hydrochloride and trimebutine drugs. Spectroscopic and thermal characterization of CT complexes. Spectrochim. Acta A 129, 84–95 (2014)

  20. Skoog, D.A.: Principal of Instrumental Analysis, 3rd edn. Sunder College Publisher, New York (1985)

    Google Scholar 

  21. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, E.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09 ed., Gaussian, Inc.: Wallingford CT (2009)

  22. Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  23. Frisch, A., Nielson, A.B., Holder, A.J.: GAUSSVIEW User Manual. Gaussian Inc, Pittsburgh (2000)

    Google Scholar 

  24. Saleh, G.A., Askal, H.F., Radwan, M.F., Omar, M.A.: Use of charge-transfer complexation in the spectrophotometric analysis of certain cephalosporins. Talanta 54, 1205–1215 (2001)

    Article  CAS  Google Scholar 

  25. Parthasarathy, T., NageshwarRao, K., Sethuram, B., NavaneethRao, T.: Photopolymerisaion of acrylonitrile with the isopropanol–Ag(I) system as initiator. J. Macromol. Sci Chem. A 23, 955–961 (1986)

    Article  Google Scholar 

  26. Benesi, H.A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)

    Article  CAS  Google Scholar 

  27. Pandeeswaran, M., Elango, K.P.: Solvent effect on the charge transfer complex of oxatomide with 2,3-dichloro-5,6-dicyanobenzoquinone. Spectrochim. Acta A 65, 1148–1153 (2006)

    Article  CAS  Google Scholar 

  28. Briegleb, G., Czekalla, J.: Intensity of electron transition bands in electron donator–acceptor complexes. Z. Physik. Chem. (Frankfurt) 24, 37–54 (1960)

    Article  CAS  Google Scholar 

  29. Refat, M.S., Sadeek, S.A., Khater, H.M.: Electronic, infrared, and 1H NMR spectral studies of the novel charge-transfer complexes of o-tolidine and p-toluidine with alternation π-acceptors (3,5-dinitro benzoic acid and 2,6-dichloroquinone-4-chloroimide) in CHCl3 solvent. Spectrochim. Acta A 64, 778–788 (2006)

    Article  Google Scholar 

  30. Bhattacharya, S.: Ab initio and TDDFT investigations on charge transfer transition for the o-chloranil/aniline complex in gas phase. Chem. Phys. Lett. 446, 199–205 (2007)

    Article  CAS  Google Scholar 

  31. Madhulata, S., Nitin, S., Satyen, S.: Investigation of ground state charge transfer complex between paracetamol and p-chloranil through DFT and UV–visible studies. J. Mol. Struct. 1021, 153–157 (2012)

    Article  Google Scholar 

  32. Mizuseki, H., Igarashi, N., Belosludov, R.V., Farajian, A.A., Kawazoe, Y.: Theoretical study of chlorin–fullerene supramolecular complexes for photovoltaic devices. J. Appl. Phys. 42, 2503–2505 (2003)

    Article  CAS  Google Scholar 

  33. Mizuseki, H., Igarashi, N., Belosludov, R.V., Farajian, A.A., Kawazoe, Y.: Theoretical study of phthalocyanine–fullerene complex for a high efficiency photovoltaic device using ab initio electronic structure calculation. Synth. Met. 138, 281–283 (2003)

    Article  CAS  Google Scholar 

  34. Shehab, O.R., Mansour, A.M.: Sparfloxacin charge transfer complexes with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone and tetracyanoquinodimethane: molecular structures, spectral, and DFT studies. J. Mol. Struct. 1093, 186–194 (2015)

    Article  CAS  Google Scholar 

  35. Balachandran, V., Janaki, A., Nataraj, A.: Theoretical investigations on molecular structure, vibrational spectra, HOMO, LUMO, NBO analysis and hyperpolarizability calculations of thiophene-2-carbohydrazide. Spectrochim. Acta A 118, 321–330 (2014)

    Article  CAS  Google Scholar 

  36. Al-Ahmary, K.M., Alenezi, M.S., Habeeb, M.M.: Synthesis, spectroscopic and DFT theoretical studies on the hydrogen bonded charge transfer complex of 4-aminoquinoline with chloranilic acid. J. Mol. Liq. 220, 166–182 (2016)

    Article  CAS  Google Scholar 

  37. Mansour, A.M.: Molecular structure and spectroscopic properties of novel manganese(II) complex with sulfamethazine drug. J. Mol. Struct. 1035, 114–123 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of authors AL is thankful to UGC, New Delhi for providing a fellowship, and to The Head, Department of Chemistry, Osmania University, for providing the facilities for the work. Funding was provided by University Grants Commission (Grant No. F.4-1/2006(BSR)11-38/2008(BSR)/2014-2015/02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parthasarathy Tigulla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakkadi, A., Baindla, N. & Tigulla, P. Synthesis, Spectroscopic and Computational Studies of Charge-Transfer Complexation Between 4-Aminoaniline and 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone. J Solution Chem 46, 2171–2190 (2017). https://doi.org/10.1007/s10953-017-0685-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0685-9

Keywords

Navigation