Skip to main content
Log in

Evaluation of Vanadium(IV) as a Non-radioactive Surrogate for Technetium(IV) by Comparison of Stability Constants for Polyamino Polycarboxylate Ligand Complexation

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The stability constants for the Tc(IV) and V(IV) complexation with the polyamino polycarboxylate ligands IDA, NTA, HEDTA and DTPA were determined using liquid–liquid extraction techniques. These stability constants were then used to evaluate the validity of using V(IV) as a chemical analogue for Tc(IV). Results suggest that Tc(IV), as TcOOH+, will form β 1−11 complexes with the selected ligands, while V(IV), as VO2+, will form β 101 complexes. The values for these determined stability constants are (in log10 unit) 10.9 ± 0.1, 11.4 ± 0.1, 14.9 ± 0.1, and 20.1 ± 0.1 for Tc(IV) in 0.5 mol·L−1 NaCl at 25 °C, for IDA, NTA, HEDTA and DTPA, respectively, they are 9.3 ± 0.1, 11.6 ± 0.2, 15.8 ± 0.1, and 20.8 ± 0.1 for V(IV) in 0.5 mol·L−1 NaCl at 25 °C, for the same suite of ligands. The incorporation of a hydroxide into the metal ligand complexes formed by Tc(IV) is proposed as the largest factor differentiating the apparent stability constants of Tc(IV) and V(IV). This work shows that V(IV) is a poor analog for Tc(IV); however, despite the differences in complexation mechanism between V(IV) and Tc(IV), V(IV) still appears to have some use for predicting Tc(IV) complexation behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baum, E.M., Ernesti, M.C., Knox, H.D., Miller, T.R., Watson, A.M.: Chart of the Nuclides, 17th edn. Bechtel Marine Propulsion Corporation, New York (2010)

    Google Scholar 

  2. Serne, R., Rapko, B.: Technetium Inventory, Distribution, and Speciation in Hanford Tanks. Pacific Northwest National Labs, Richland (2014)

    Google Scholar 

  3. Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Kukkadapu, R.K., McKinley, J.P., Heald, S.M., Liu, C., Plymale, A.E.: Reduction of TcO 4 by sediment-associated biogenic Fe(II). Goechim. Cosmochim. Acta 68, 3171–3187 (2004)

    Article  CAS  Google Scholar 

  4. Rard, J.A., Anderegg, G., Wanner, H., Rand, M.H.: Chemical Thermodynamics of Technetium. Elsevier, New York (1999)

    Google Scholar 

  5. Wall, N.A., Karunathilake, N., Dong, W.: Interactions of Tc(IV) with citrate in NaCl media. Radiochim. Acta 101, 111–116 (2012)

    Article  Google Scholar 

  6. Gu, B., Dong, W., Liang, L., Wall, N.A.: Dissolution of technetium(IV) oxide by natural and synthetic organic ligands under both reducing and oxidizing conditions. Environ. Sci. Technol. 45, 4771–4777 (2011)

    Article  CAS  Google Scholar 

  7. Boggs, M.A., Dong, W., Gu, B., Wall, N.A.: Complexation of Tc(IV) with acetate at varying ionic strengths. Radiochim. Acta 98, 583–587 (2010)

    Article  CAS  Google Scholar 

  8. Boggs, M.A., Islam, M., Dong, W., Wall, N.A.: Complexation of Tc(IV) with EDTA at varying ionic strength of NaCl. Radiochim. Acta 101, 13–18 (2012)

    Article  Google Scholar 

  9. Omoto, T., Wall, N.A.: Stability constant determinations for technetium(IV) complexation with selected amino carboxylate ligands in high nitrate solutions. Radiochem. Acta 105(8), 621–627 (2017)

    CAS  Google Scholar 

  10. Boggs, M.A., Gribat, L.C., Boele, C.A., Wall, N.A.: Rapid separation of VI/VII technetium oxidation states by solventextraction with iodonitrotetrazolium chloride. J. Radioanal. Nucl. Chem. 293, 843–846 (2012)

    Article  CAS  Google Scholar 

  11. Kim, E., Boulègue, J.: Chemistry of rhenium as an analogue of technetium: experimental studies of the dissolution of rhenium oxides in aqueous solutions. Radiochim. Acta 91, 211–216 (2003)

    Article  CAS  Google Scholar 

  12. Xia, Y., Hess, N.J., Felmy, A.R.: Stability constants of technetium(IV) oxalate complexes as a function of ionic strength. Radiochim. Acta 94(3), 137–141 (2006)

    Article  CAS  Google Scholar 

  13. Swearingen, K.J., Omoto, T., Wall, N.A.: Analysis of organic and high dissolved salt content solutions using inductively coupled plasma optical emission spectrometry. J. Anal. At. Spectrom. (2017) (in press)

  14. Hess, N.J., Xia, Y., Rai, D., Conradson, S.D.: Thermodynamic model for the solubility of TcO2·xH2O(am) in the aqueous Tc(IV)–Na+–H+–H2O system. J. Solution Chem. 33, 199–226 (2004)

    Article  CAS  Google Scholar 

  15. Choi, N.H., Kwon, S.-K., Kim, H.: Analysis of the oxidation of the V(II) by dissolved oxygen using UV–visible spectrophotometry in a vanadium redox flow battery. J. Electrochem. Soc. 160, A973–A979 (2013)

    Article  CAS  Google Scholar 

  16. Rydberg, J., Cox, M., Musikas, C., Chopin, G.R.: Solvent Extraction Principles and Practice, 2nd edn. Marcel Dekker Inc, New York (2004)

    Book  Google Scholar 

  17. Jensen, M.P., Nash, K.L.: Solvent extraction separations of trivalent lanthanide and actinide ions using an aqueous aminomethanediposphonic acid. In: International Solvent Extraction Conference, Barcelona, Spain (1999)

  18. Smith, R.M., Martell, A., Motekaitis, R.: NIST Critically Selected Stability Constants of Metal Complexes Database. Version 4.0. User’s Guide., NIST Standard Reference Database 46, (1997)

  19. Levin, V.I., Gracheva, M.A., Ilyushchenko, O.N.: The stability constant of 99mTc-DTPA complex. Int. J. Appl. Rad. Isot. 31, 382–385 (1980)

    Article  CAS  Google Scholar 

  20. Gans, P.: Hyperquad Simulation and Speciation. Protonic Software, Leeds (2009)

    Google Scholar 

  21. Wildung, R.E., Li, S.W., Murray, C.J., Krupka, K.M., Xie, Y., Hess, N.J., Roden, E.E.: Technetium reduction in sediments of a shallow aquifer exhibiting dissimilatory iron reduction potential. FEMS Microbiol. Ecol. 49, 151–162 (2004)

    Article  CAS  Google Scholar 

  22. Hummel, W., Anderegg, G., Puigdomenech, I., Rao, L.F., Tochiyama, O.: The OECD/NEA TDB review of selected organic ligands. Radiochim. Acta 93, 719–725 (2005)

    Article  CAS  Google Scholar 

  23. Mateo, S., Brito, F.: Vanadium(IV) complexes. II. Hydrolysis of the VO2+ ion (3 M potassium chloride, 25°). An. Quim. 68, 37–43 (1972)

    CAS  Google Scholar 

  24. Felcman, J., Dasilva, J.: Complexes of oxovanadium(IV) with polyaminocarboxylic acids. Talanta 30, 565–570 (1983)

    Article  CAS  Google Scholar 

  25. Singh, S.P., Tandon, J.P.: pH-metric studies on the interaction of oxovanadium(IV) with iminodiacetic (IMDA) and nitrilotriacetic (NTA) acids. J. Prakt. Chem. 315, 23–30 (1973)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Defense Threat Reduction Agency, Basic Research Award #HDTRA1-12-1-0015, to Washington State University. The work was also funded by the U.S. Department of Energy Nuclear Energy University Program (NEUP) through grant DE-NE0000658.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie A. Wall.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omoto, T., Wall, N.A. Evaluation of Vanadium(IV) as a Non-radioactive Surrogate for Technetium(IV) by Comparison of Stability Constants for Polyamino Polycarboxylate Ligand Complexation. J Solution Chem 46, 1981–1994 (2017). https://doi.org/10.1007/s10953-017-0680-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0680-1

Keywords

Navigation