Abstract
The stability constants for the Tc(IV) and V(IV) complexation with the polyamino polycarboxylate ligands IDA, NTA, HEDTA and DTPA were determined using liquid–liquid extraction techniques. These stability constants were then used to evaluate the validity of using V(IV) as a chemical analogue for Tc(IV). Results suggest that Tc(IV), as TcOOH+, will form β 1−11 complexes with the selected ligands, while V(IV), as VO2+, will form β 101 complexes. The values for these determined stability constants are (in log10 unit) 10.9 ± 0.1, 11.4 ± 0.1, 14.9 ± 0.1, and 20.1 ± 0.1 for Tc(IV) in 0.5 mol·L−1 NaCl at 25 °C, for IDA, NTA, HEDTA and DTPA, respectively, they are 9.3 ± 0.1, 11.6 ± 0.2, 15.8 ± 0.1, and 20.8 ± 0.1 for V(IV) in 0.5 mol·L−1 NaCl at 25 °C, for the same suite of ligands. The incorporation of a hydroxide into the metal ligand complexes formed by Tc(IV) is proposed as the largest factor differentiating the apparent stability constants of Tc(IV) and V(IV). This work shows that V(IV) is a poor analog for Tc(IV); however, despite the differences in complexation mechanism between V(IV) and Tc(IV), V(IV) still appears to have some use for predicting Tc(IV) complexation behavior.
Similar content being viewed by others
References
Baum, E.M., Ernesti, M.C., Knox, H.D., Miller, T.R., Watson, A.M.: Chart of the Nuclides, 17th edn. Bechtel Marine Propulsion Corporation, New York (2010)
Serne, R., Rapko, B.: Technetium Inventory, Distribution, and Speciation in Hanford Tanks. Pacific Northwest National Labs, Richland (2014)
Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Kukkadapu, R.K., McKinley, J.P., Heald, S.M., Liu, C., Plymale, A.E.: Reduction of TcO −4 by sediment-associated biogenic Fe(II). Goechim. Cosmochim. Acta 68, 3171–3187 (2004)
Rard, J.A., Anderegg, G., Wanner, H., Rand, M.H.: Chemical Thermodynamics of Technetium. Elsevier, New York (1999)
Wall, N.A., Karunathilake, N., Dong, W.: Interactions of Tc(IV) with citrate in NaCl media. Radiochim. Acta 101, 111–116 (2012)
Gu, B., Dong, W., Liang, L., Wall, N.A.: Dissolution of technetium(IV) oxide by natural and synthetic organic ligands under both reducing and oxidizing conditions. Environ. Sci. Technol. 45, 4771–4777 (2011)
Boggs, M.A., Dong, W., Gu, B., Wall, N.A.: Complexation of Tc(IV) with acetate at varying ionic strengths. Radiochim. Acta 98, 583–587 (2010)
Boggs, M.A., Islam, M., Dong, W., Wall, N.A.: Complexation of Tc(IV) with EDTA at varying ionic strength of NaCl. Radiochim. Acta 101, 13–18 (2012)
Omoto, T., Wall, N.A.: Stability constant determinations for technetium(IV) complexation with selected amino carboxylate ligands in high nitrate solutions. Radiochem. Acta 105(8), 621–627 (2017)
Boggs, M.A., Gribat, L.C., Boele, C.A., Wall, N.A.: Rapid separation of VI/VII technetium oxidation states by solventextraction with iodonitrotetrazolium chloride. J. Radioanal. Nucl. Chem. 293, 843–846 (2012)
Kim, E., Boulègue, J.: Chemistry of rhenium as an analogue of technetium: experimental studies of the dissolution of rhenium oxides in aqueous solutions. Radiochim. Acta 91, 211–216 (2003)
Xia, Y., Hess, N.J., Felmy, A.R.: Stability constants of technetium(IV) oxalate complexes as a function of ionic strength. Radiochim. Acta 94(3), 137–141 (2006)
Swearingen, K.J., Omoto, T., Wall, N.A.: Analysis of organic and high dissolved salt content solutions using inductively coupled plasma optical emission spectrometry. J. Anal. At. Spectrom. (2017) (in press)
Hess, N.J., Xia, Y., Rai, D., Conradson, S.D.: Thermodynamic model for the solubility of TcO2·xH2O(am) in the aqueous Tc(IV)–Na+–H+–H2O system. J. Solution Chem. 33, 199–226 (2004)
Choi, N.H., Kwon, S.-K., Kim, H.: Analysis of the oxidation of the V(II) by dissolved oxygen using UV–visible spectrophotometry in a vanadium redox flow battery. J. Electrochem. Soc. 160, A973–A979 (2013)
Rydberg, J., Cox, M., Musikas, C., Chopin, G.R.: Solvent Extraction Principles and Practice, 2nd edn. Marcel Dekker Inc, New York (2004)
Jensen, M.P., Nash, K.L.: Solvent extraction separations of trivalent lanthanide and actinide ions using an aqueous aminomethanediposphonic acid. In: International Solvent Extraction Conference, Barcelona, Spain (1999)
Smith, R.M., Martell, A., Motekaitis, R.: NIST Critically Selected Stability Constants of Metal Complexes Database. Version 4.0. User’s Guide., NIST Standard Reference Database 46, (1997)
Levin, V.I., Gracheva, M.A., Ilyushchenko, O.N.: The stability constant of 99mTc-DTPA complex. Int. J. Appl. Rad. Isot. 31, 382–385 (1980)
Gans, P.: Hyperquad Simulation and Speciation. Protonic Software, Leeds (2009)
Wildung, R.E., Li, S.W., Murray, C.J., Krupka, K.M., Xie, Y., Hess, N.J., Roden, E.E.: Technetium reduction in sediments of a shallow aquifer exhibiting dissimilatory iron reduction potential. FEMS Microbiol. Ecol. 49, 151–162 (2004)
Hummel, W., Anderegg, G., Puigdomenech, I., Rao, L.F., Tochiyama, O.: The OECD/NEA TDB review of selected organic ligands. Radiochim. Acta 93, 719–725 (2005)
Mateo, S., Brito, F.: Vanadium(IV) complexes. II. Hydrolysis of the VO2+ ion (3 M potassium chloride, 25°). An. Quim. 68, 37–43 (1972)
Felcman, J., Dasilva, J.: Complexes of oxovanadium(IV) with polyaminocarboxylic acids. Talanta 30, 565–570 (1983)
Singh, S.P., Tandon, J.P.: pH-metric studies on the interaction of oxovanadium(IV) with iminodiacetic (IMDA) and nitrilotriacetic (NTA) acids. J. Prakt. Chem. 315, 23–30 (1973)
Acknowledgements
This work was supported by the Defense Threat Reduction Agency, Basic Research Award #HDTRA1-12-1-0015, to Washington State University. The work was also funded by the U.S. Department of Energy Nuclear Energy University Program (NEUP) through grant DE-NE0000658.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Omoto, T., Wall, N.A. Evaluation of Vanadium(IV) as a Non-radioactive Surrogate for Technetium(IV) by Comparison of Stability Constants for Polyamino Polycarboxylate Ligand Complexation. J Solution Chem 46, 1981–1994 (2017). https://doi.org/10.1007/s10953-017-0680-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-017-0680-1