Skip to main content
Log in

NMR Evidence for Grotthuss-like Proton Diffusion on the Surface of N-Alkyl-ammonium Micelles in Acidic Aqueous Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Dramatic enhancements of proton exchange rates, by a factor of up to ca. 10 × 104, are observed in acidic aqueous solution on formation of micelles of N-alkyl-ammonium chlorides C n H2n+1NH x Me3 x , with n = 8–12 and x = 1 or 2. Exchange rate/concentration plots at constant pH yield the cmc value as the break point abscissa and the micellar NMR rate constant k mic as the asymptotic limit. The linearity of k mic as a function of 1/[H+] and the saturation factor of ammonium hydrogens have put in evidence a pH increase in the immediate surrounding of the micelle surface by ca. two units, and a Grotthuss-like pH-independent proton transfer from one polar head to the next. The number of diffusion steps is shown to increase with the length of the carbon chain and the nature of the polar head, due to a higher compactness of micelles and a greater counter-ionic screening effect up to 0.82. The cmc data obtained in the present work have the peculiarity of being obtained in highly acidic solutions, allowing for an in-depth discussion of pH-cmc relationships, and are in fair agreement with those obtained by chemical shift, fluorescence and conductivity measurements, with the advantage of an improved sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6

Similar content being viewed by others

Notes

  1. As pointed out by one reviewer, the electrostatic screening of micelles arises from both the condensed counter ions and the diffuse layer. In the presence of a high concentration of hydrochloric acid (~ 1 mol·L−1), the thickness of the double layer (Debye length) is reduced to ca. 0.30 nm, less than twice the ionic radius of chloride ions (0.18 nm), while the hydronium ions are strongly repelled and hydroxide ions are in a relatively negligible concentration. This means that under the present conditions the contribution of the diffuse layer to the screening constant α may be ignored with a good approximation.

References

  1. Shinoda, K., Hutchinson, E.: Pseudo-Phase Separation model for thermodynamic calculations in micellar solutions. J. Phys. Chem. 66, 577–582 (1962)

    Article  CAS  Google Scholar 

  2. Minero, C., Pelizzetti, E.: The generalized pseudo-phase model: treatment of multiple equilibria in micellar solutions. Pure Appl. Chem. 102, 3900–3903 (1993)

    Google Scholar 

  3. Bunton, C.A., Romsted, L.S., Thamarit, C.: The pseudo-phase model of micellar catalysis: addition of cyanide Ion to N-alkylpyridinium Ions. J. Am. Chem. Soc. 102, 3900–3903 (1980)

    Article  CAS  Google Scholar 

  4. Cordes, E.H., Dunlap, R.B.: Kinetics of organic reactions in micellar systems. Acc. Chem. Res. 2, 329–337 (1969)

    Article  CAS  Google Scholar 

  5. Dwars, T., Paetzold, E., Oehme, G.: Reactions in micellar systems. Angew. Chem. Int. Ed. 44, 7174–7199 (2005)

    Article  CAS  Google Scholar 

  6. Bunton, C.A.: The dependence of micellar rate effects upon reaction mechanism. Adv. Colloid Interface Sci. 123–126, 333–343 (2006)

    Article  Google Scholar 

  7. Burgess, J., Pelizzetti, E.: Solvent and micro-domain effects on reactivity in inorganic chemistry. Prog. React. Kinet. 17, 1–170 (1992)

    CAS  Google Scholar 

  8. Tascioglu, S.: Micellar solutions as reaction media. Tetrahedron 52, 11113–11152 (1996)

    Article  CAS  Google Scholar 

  9. Whiddon, C.R., Bunton, C.A., Söderman, O.: Titration of fatty acids in sugar-derived [APG] surfactants. J. Phys. Chem. B 107, 1001–1005 (2003)

    Article  CAS  Google Scholar 

  10. Chechik, V.: Reactivity in organized assemblies. Annu. Rep. Prog. Chem. Sect. B 102, 357–376 (2006)

    Article  CAS  Google Scholar 

  11. Balakrishnan, V.K., Han, X., VanLoon, G.W., Dust, J.M., Toullec, J., Buncel, E.: Acceleration of nucleophilic attack on fenitrothion by reactive counterion cationic micelles. Langmuir 20, 6536–6593 (2004)

    Article  Google Scholar 

  12. Fendler, J., Fendler, E.: Catalysis in Micellar and Macromolecular Systems. Academic Press, New York (1975)

    Google Scholar 

  13. Mittal, K.L.: Micellization, Solubilization and Microemulsions, vol. 2. Plenum Press, New York, London (1977)

    Book  Google Scholar 

  14. Cordes, E.H.: Reaction Kinetics in Micelles. Plenum Press, New York (1973)

    Book  Google Scholar 

  15. Anastas, P.T., Warner, J.C.: Green Chemistry: Theory and Practice. Oxford University Press, New York (1998)

    Google Scholar 

  16. Lindsey, J.S.: Self-assembly in synthetic routes to molecular devices: biological principles and chemical perspectives: a review. New J. Chem. 15, 153–180 (1991)

    CAS  Google Scholar 

  17. Serowy, S., Saparov, S.M., Antonenko, Y.M., Kozlovsky, W., Hagen, V., Pohl, P.: Structural proton diffusion along lipid bilayers. Biophys. J. 84, 1031–1037 (2003)

    Article  CAS  Google Scholar 

  18. Asandei, A., Mereuta, L., Luchian, T.: Influence of membrane potentials upon reversible protonation of acidic residues from the OmpF eyelet. Biophys. Chem. 135, 32–40 (2008)

    Article  CAS  Google Scholar 

  19. Smirnov, A.Y., Mourokh, L.G., Nori, F.: Resonant energy transfer in electron-driven proton pumps. Phys. Stat. Sol. 5, 398–401 (2008)

    Article  CAS  Google Scholar 

  20. Heberle, J., Riesle, J., Thiedemann, G., Oesterhelt, D., Dencher, N.A.: Proton migration along the membrane surface and retarded surface to bulk transfer. Nature 370, 379–382 (1994)

    Article  CAS  Google Scholar 

  21. Antonenko, Y.N., Pohl, P.: Microinjection in combination with microfluorimetry to study proton diffusion along phospholipid membranes. Eur. Biophys. J. 37, 865–870 (2008)

    Article  CAS  Google Scholar 

  22. Dupont-Leclercq, L., Delpuech, J.-J., Henry, B.: An NMR investigation of fast proton transfer along the surface of cationic micelles. ChemPhysChem 9, 2305–2308 (2008)

    Article  CAS  Google Scholar 

  23. Fendler, J.H.: Membrane Mimetic Chemistry. Wiley, New York (1982)

    Google Scholar 

  24. Zana, R.: Micellization of cationic surfactants. In: Rubingh, D.N., Holland, P.M. (eds.) Cationic Surfactants Physical Chemistry, pp. 41–85. Marcel Dekker, New York (1991)

    Google Scholar 

  25. Nery, H., Marchal, J.P., Canet, D.: Nuclear magnetic resonance of alkyl-ammonium chlorides. J. Colloid Interface Sci. 77, 174–181 (1980)

    Article  CAS  Google Scholar 

  26. Zana, R.: Dynamics in micellar solutions of surfactants. In: Zana, R. (ed.) Dynamics of Surfactant Self-Assemblies, pp. 75–160. Marcel Dekker, New York (2005)

    Chapter  Google Scholar 

  27. Aniansson, E.A., Wall, S.N.: Kinetics of step-wise micelle association. J. Phys. Chem. 78, 1024–1030 (1974)

    Article  CAS  Google Scholar 

  28. Aniansson, E.A., Wall, S.N., Almgren, M., Hoffmann, H., Kielmann, I., Ulbricht, W., Zana, R., Lang, J., Tondre, C.: Theory of the kinetics of micellar equilibria and quantitative interpretation of chemical relaxation studies of micellar solutions of ionic surfactants. J. Phys. Chem. 80, 905–922 (1976)

    Article  CAS  Google Scholar 

  29. Lindman, B., Olsson, U., Söderman, O.: Surfactant solutions: aggregation phenomena and microheterogeneity. In: Delpuech, J.-J. (ed.) Dynamics of solutions and fluid mixtures by NMR, pp. 345–395. Wiley, Chichester (1995)

    Google Scholar 

  30. Advanced Chemistry Development (ACD/Labs) Software V8.14 for Solaris (© 1994–2008 ACD/Labs)

  31. Hine, J., Li, W.S.: Internal hydrogen bonding and positions of protonation in the monoprotonated forms of some 1-3 and 1-4 diamines. J. Org. Chem. 40, 1795–1800 (1975)

    Article  CAS  Google Scholar 

  32. Grunwald, E., Loewenstein, A., Meiboom, S.: Rates and mechanisms of protolysis of methylammonium ion in aqueous solution studied by proton magnetic resonance. J. Chem. Phys. 27, 630–640 (1957)

    Article  CAS  Google Scholar 

  33. Loewenstein, A., Meiboom, S.: Rates and mechanisms of protolysis of di- and trimethylammonium ions studied by proton magnetic resonance. J. Chem. Phys. 27, 1067–1071 (1957)

    Article  CAS  Google Scholar 

  34. Grunwald, E., Ralph, E.K.: Proton transfer processes. In: Jackman, L.M., Cotton, F.A. (eds.) Dynamic Nuclear Magnetic Resonance Spectroscopy, pp. 621–647. Academic Press, New York (1975)

    Chapter  Google Scholar 

  35. Pitman, I.H., Uekama, K., Higuchi, T., Hall, W.E.: Aminolysis of acid anhydrides in water. I. Rate acceleration of hydrophobic bonding in reactions between small molecules. J. Am. Chem. Soc. 94, 8147–8152 (1972)

    Article  CAS  Google Scholar 

  36. Kalyanasundaram, K., Thomas, J.K.: Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J. Am. Chem. Soc. 99, 2039–2044 (1977)

    Article  CAS  Google Scholar 

  37. Turro, N.J., Yekta, A.: Luminescent probes for detergent solutions: a simple procedure for determination of the mean aggregation number of micelles. J. Am. Chem. Soc. 100, 5951–5952 (1978)

    Article  CAS  Google Scholar 

  38. Goddard, E.D., Turro, N.J., Kuo, P.L., Ananthapadmanabhan, K.P.: Fluorescence probes for critical micelle concentration determination. Langmuir 1, 352–355 (1985)

    Article  CAS  Google Scholar 

  39. Delpuech, J.-J., Champmartin, D., Selmeczi, K., Henry, B.: Large variations in acidity of terminal amide bonds in histamine-containing peptides as measured by DNMR. Tetrahedron 70, 6482–6496 (2014)

    Article  CAS  Google Scholar 

  40. Forsen, S.: A., Hoffman, R.: study of moderately rapid chemical exchange reaction by means of nuclear magnetic double resonance. J. Chem. Phys. 39, 2892–2901 (1963)

    Article  CAS  Google Scholar 

  41. Delpuech, J.-J., Siriex, F., Deschamps, M.N.: Transferts protoniques de sels d’ammonium substitues. VII Deprotonation de sels de N-methylpiperidinium en solution aqueuse. Org. Magn. Reson. 5, 651–665 (1972)

    Article  Google Scholar 

  42. Delpuech, J.-J.: Timescales in NMR: nuclear site exchange and dynamic NMR. In: Delpuech, J.-J. (ed.) Dynamics of Solutions and Fluid Mixtures by NMR, pp. 73–172. Wiley, Chichester (1995)

    Google Scholar 

  43. Delpuech, J.-J., Serratrice, G., Strich, A., Veillard, A.: An ab initio LCAO-MO-SCF study of reaction paths for proton transfer in ammonium aqueous solution. Mol. Phys. 29, 849–871 (1975)

    Article  CAS  Google Scholar 

  44. Menger, F.M., Lynn, J.L.: Fast proton transfer at a micelle surface. J. Am. Chem. Soc. 97, 948–949 (1975)

    Article  CAS  Google Scholar 

  45. Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953)

    Google Scholar 

  46. Tabony, J.: Structure of the polar head layer and water penetration in a cationic micelle. Mol. Phys. 51, 975–989 (1984)

    Article  CAS  Google Scholar 

  47. Gaillon, L., Lelièvre, J., Gaboriaud, R.: Counter-ion effects in aqueous solutions of cationic surfactants: electromotive force measurements and thermodynamic model. J. Colloid Interface Sci. 213, 287–297 (1993)

    Article  Google Scholar 

  48. Mata, J., Varade, D., Bahadur, P.: Aggregation behavior of quaternary salt based cationic surfactants. Thermochim. Acta 428, 147–155 (2005)

    Article  CAS  Google Scholar 

  49. Asakawa, T., Kitano, H., Ohta, A., Miyagishi, S.: Convenient estimation for counter-ion dissociation of cationic micelles using chloride-sensitive fluorescence probe. J. Colloid Interface Sci. 242, 284–287 (2001)

    Article  CAS  Google Scholar 

  50. Zana, R.: Ionization of cationic micelles: effect of the detergent structure. J. Colloid Interface Sci. 78, 330–337 (1980)

    Article  CAS  Google Scholar 

  51. Corrin, M.L., Harkins, W.D.: The effect of salts on the critical concentration for the formation of micelles in colloidal electrolytes. J. Am. Chem. Soc. 69, 683–688 (1947)

    Article  CAS  Google Scholar 

  52. Fuguet, E., Ràfols, C., Rosés, M., Bosch, E.: Critical micelle concentration of surfactants in aqueous buffered and unbuffered systems. Anal. Chim. Acta 548, 95–100 (2005)

    Article  CAS  Google Scholar 

  53. Mukerjee, P.: The nature of the association equilibria and hydrophobic bonding in aqueous solutions of association colloids. Adv. Colloid Interface Sci. 1, 242–275 (1967)

    Article  Google Scholar 

  54. Jones, M.N., Reed, D.A.: Light Scattering by solutions of tetradecyl-trimethyl-ammonium Salts. Kolloid Z. Z. Polym. 235, 1196–1200 (1969)

    Article  CAS  Google Scholar 

  55. Jansson, M., Stilbs, P.: Organic counterion binding to micelles: effects of counter-ion structure on micellar aggregation and counterion binding and location. J. Phys. Chem. 91, 113–116 (1987)

    Article  CAS  Google Scholar 

  56. Minofar, B., Vácha, R., Wahab, A., Mahiuddin, S., Kunz, W., Jungwirth, P.: Propensity for the air/water interface and ion pairing in magnesium acetate vs magnesium nitrate solutions: molecular dynamics simulations and surface tension measurements. J. Phys. Chem. B 110, 15939–15944 (2006)

    Article  CAS  Google Scholar 

  57. Jagoda-Cwiklik, B., Cwiklik, L., Jungwirth, P.: Behavior of the Eigen form of hydronium at the air/water Interface. J. Phys. Chem. A 115, 5881–5886 (2011)

    Article  CAS  Google Scholar 

  58. Liu, Y., Minofar, B., Desyaterik, Y., Dames, E., Zhu, Z., Cain, J.P., Hopkins, R.J., Gilles, M.K., Wang, H., Jungwirth, P., Laskin, A.: Internal structure, hygroscopic and reactive properties of mixed sodium methanesulfonate–sodium chloride particles. Phys. Chem. Chem. Phys. 13, 11846–11857 (2011)

    Article  CAS  Google Scholar 

  59. Winter, B., Faubel, M., Vácha, R., Jungwirth, P.: Behavior of hydroxide at the water/vapor interface. Chem. Phys. Lett. 474, 241–247 (2009)

    Article  CAS  Google Scholar 

  60. de Grotthuss, C.J.T.: Sur la décomposition de l’eau et des corps qu’elle tient en dissolution à l’aide de l’électricité galvanique. Ann. Chim. 58, 54–73 (1806)

    Google Scholar 

  61. Cukierman, S.: Et tu Grotthuss. Biochim. Biophys. Acta 1757, 876–878 (2006)

    Article  CAS  Google Scholar 

  62. Yoshida, T., Tokumasu, T.: Molecular dynamics study of proton transfer including Grotthus mechanism in polymer electrolyte membrane. ECS Trans. 33, 1055–1065 (2010)

    Article  CAS  Google Scholar 

  63. Mabuchi, T., Tokumasu, T.: Analysis of proton and water transfer in PFSA membrane by molecular dynamics simulation. ECS Trans. 41, 2115–2123 (2011)

    Article  CAS  Google Scholar 

  64. Tse, Y.-L.S., Herring, A.M., Kim, K., Voth, G.A.: Molecular dynamics simulations of proton transport in 3M and Nafion perfluorosulfonic acid membranes. J. Phys. Chem. C 117, 8079–8091 (2013)

    Article  CAS  Google Scholar 

  65. Ramsey, I.S., Mokrab, Y., Carvacho, I., Sands, A.Z., Sansom, S.P.M., Clapham, D.E.: An aqueous H+ permeation pathway in the voltage-gated proton channel Hv1. Nat. Struct. Mol. Biol. 17, 869–875 (2010)

    Article  CAS  Google Scholar 

  66. Matsuki, Y., Iwamoto, M., Mita, K., Shigemi, K., Matsunaga, S., Iki, S.: Rectified proton Grotthuss conduction across a long water-wire in the test nanotube of the polytheonamide B channel. J. Am. Chem. Soc. 138, 4168–4177 (2016)

    Article  CAS  Google Scholar 

  67. Wolf, M.G., Grubmueller, H., Groenhof, G.: Anomalous surface diffusion of protons on lipid membranes. J. Biophys 107, 76–87 (2014)

    Article  CAS  Google Scholar 

  68. Morelli, A.M., Ravera, S., Calzia, D., Panfoli, I.: Hypothesis of lipid-phase-continuity proton transfer for aerobic ATP synthesis. J. Cerebr. Blood Flow Metab. 33, 1838–1842 (2013)

    Article  CAS  Google Scholar 

  69. Block, M., Kitchener, J.A.: Polarization phenomena in commercial ion-exchange membranes. Electrochem. Soc. Interface 113, 947–953 (1966)

    Article  CAS  Google Scholar 

  70. Saito, M., Hayamizu, K., Okada, T.: Temperature dependence of ion and water transport in perfluorinated ionomer membranes for fuel cells. J. Phys. Chem. B 109, 3112–3119 (2005)

    Article  CAS  Google Scholar 

  71. Petersen, M.K., Wang, F., Blake, N.P., Metiu, H., Voth, G.A.: Excess proton solvation and delocalization in a hydrophilic pocket of the proton conducting polymer. J. Phys. Chem. B 109, 3727–3730 (2005)

    Article  CAS  Google Scholar 

  72. Choi, B.G., Hong, J., Park, Y.C., Jung, D.H., Hong, W.H., Hammond, P.T., Park, H.: Innovative polymer nanocomposite electrolytes: nanoscale manipulation of ion channels by functionalized graphenes. ACS Nano 5, 5167–5174 (2011)

    Article  CAS  Google Scholar 

  73. Li, T., Zhong, G., Fu, R., Yang, Y.: Synthesis and characterization of Nafion/cross-linked PVP semi-interpenetrating polymer network membrane for direct methanol fuel cell. J. Memb. Sci. 354, 189–197 (2010)

    Article  CAS  Google Scholar 

  74. Krishnamoorthy, I., Krishnamoorthy, G.: Probing the link between proton transport and water content in lipid membranes. J. Phys. Chem. B 105, 1484–1488 (2001)

    Article  CAS  Google Scholar 

  75. Emerson, M.T., Grunwald, E., Kaplan, M.L., Kromhout, R.A.: Proton transfer studies by NMR. III. The mean life of the amine–water hydrogen bond in aqueous solution. J. Am. Chem. Soc. 82, 6307–6314 (1960)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the “Service commun de RMN” of the University of Lorraine for the spectroscopic measurements. Dr. J–J. Delpuech thanks E. Dumortier, CNRS engineer, for his assistance in running the NMRFIT program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Henry.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delpuech, J.J., Dupont-Leclercq, L., Parant, S. et al. NMR Evidence for Grotthuss-like Proton Diffusion on the Surface of N-Alkyl-ammonium Micelles in Acidic Aqueous Solution. J Solution Chem 46, 1698–1720 (2017). https://doi.org/10.1007/s10953-017-0672-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0672-1

Keywords

Navigation