Skip to main content
Log in

Sparfloxacin Metal Complexes with Nucleosides: Potentiometric and Spectral Studies

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Potentiometric measurements of the interaction of sparfloxacin (SPFX) and metal ions Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with nucleosides (NS) adenosine, guanosine, cytidine and inosine were carried out. The complexes formed are monoprotonated M(II)(SPFX)(HNS) species, where the nucleoside acts as a secondary ligand in its protonated form. The formation of ternary complexes of some systems was confirmed by UV–Visible measurements in solution. The binding constant of M(II)–SPFX complexes were measured in Tris–HCl buffer solution (pH = 7.4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pillai, S.I., Vijayaraghavan, K., Subramanian, S.: Evaluation of DNA-binding, cleavage, BSA interaction of Zn-hydroxy flavone complex. Der. Pharma. Chemica 6, 379–389 (2014)

    CAS  Google Scholar 

  2. Chen, D., Milacic, V., Frezza, M., Dou, Q.P.: Metal complexes, their cellular targets and potential for cancer therapy. Curr. Pharm. Des. 15, 777–791 (2009)

    Article  CAS  Google Scholar 

  3. Fricker, S.P.: Metal based drugs: from serendipity to design. Dalton Trans. 43, 4903–4917 (2007)

    Article  Google Scholar 

  4. Meggers, E.: Targeting proteins with metal complexes. Chem. Commun. 9, 1001–1010 (2009)

    Article  Google Scholar 

  5. Yan, Y.K., Melchart, M., Habtemariam, A., Sadler, P.J.: Organometallic chemistry, biology and medicine: ruthenium arene anticancer complexes. Chem. Commun. 38, 4764–4776 (2005)

    Article  Google Scholar 

  6. Cohen, S.M.: New approaches for medicinal applications of bioinorganic chemistry. Curr. Opin. Chem. Biol. 11, 115–120 (2007)

    Article  CAS  Google Scholar 

  7. Ott, I., Gust, R.: Non platinum metal complexes as anti-cancer drugs. Arch. Pharm. (Weinheim) 340, 117–126 (2007)

    Article  CAS  Google Scholar 

  8. Hambley, T.W.: Developing new metal based therapeutics: challenges and opportunities. Dalton Trans. 43, 4929–4937 (2007)

    Article  Google Scholar 

  9. Odani, A., Jastrzab, R., Lomozik, L.: Equilibrium study on the interaction of phytic acid with polyamines and metal ions. Metallomics 73, 735–743 (2011)

    Article  Google Scholar 

  10. Orvig, C., Abrams, M.J.: Medicinal inorganic chemistry: introduction. Chem. Rev. 99, 2201–2204 (1999)

    Article  CAS  Google Scholar 

  11. Thompson, K.H., Orvig, C.: Boon and bane of metal ions in medicine. Science 300, 936–939 (2003)

    Article  CAS  Google Scholar 

  12. Haas, K.L., Franz, K.J.: Application of metal coordination chemistry to explore and manipulate cell biology. Chem. Rev. 109, 4921–4960 (2009)

    Article  CAS  Google Scholar 

  13. Al-Mustafa, J., Shinar, A.: Conductometric determination of the stability constants of the quinolone antibacterial agents levofloxacin and sparfloxacin with divalent metal ions. Jordan J. Chem. 8, 237–246 (2013)

    Article  CAS  Google Scholar 

  14. Azab, H.A., Anwar, Z.M., Al-Deyab, S.S., Kamel, R.M.: Potentiometric, electrochemical, and fluorescence study of the coordination properties of the monomeric and dimeric complexes of Eu(III) with nucleobases and PIPES. J. Chem. Eng. Data 56, 1960–1969 (2011)

    Article  CAS  Google Scholar 

  15. Azab, H.A., Anwar, Z.M., Al-Deyab, S.S., Abd El-Gawad, I.I., Kamel, R.M.: Comparison of the coordination tendency of amino acids, nucleobases, or mononucleotides toward the monomeric and dimeric lanthanide complexes with biologically important compounds. J. Chem. Eng. Data 56, 2613–2625 (2011)

    Article  CAS  Google Scholar 

  16. Azab, H.A., Abd El-Gawad, I.I., Kamel, R.M.: Ternary complexes formed by the fluorescent probe Eu(III)-9-anthracene carboxylic acid with pyrimidine and purine nucleobases. J. Chem. Eng. Data 54, 3069–3078 (2009)

    Article  CAS  Google Scholar 

  17. Azab, H.A., Anwar, Z.M., Kamel, R.M.: Ternary complexes formed among Pd(II) ions nucleobases, nucleosides, nucleotides and some biologically important compounds. J. Solution Chem. 45, 1095–1114 (2016)

    Article  CAS  Google Scholar 

  18. Welcher, F.J.: The Analytical Uses of Ethylene Diaminetetraacetic Acid. D.Von Nostrand Co., Inc., Princeton (1965)

    Google Scholar 

  19. Lawrence, D., Vaidyanathan, V.G., Unni Nair, B.: Synthesis, characterization and DNA binding studies of two mixed ligand complexes of ruthenium(II). J. Inorg. Biochem. 100, 1244–1251 (2006)

    Article  CAS  Google Scholar 

  20. Eshkourfu, R., Čobeljić, B., Vujčić, M., Turel, I., Pevec, A., Sepčić, K., Zec, M., Radulović, S., Srdić-Radić, T., Mitić, D., Andjelković, K., Sladić, D.: Synthesis, characterization, cytotoxic activity and DNA binding properties of the novel dinuclear cobalt(III) complex with the condensation product of 2-acetylpyridine and malonic acid dihydrazide. J. Inorg. Biochem. 105, 1196–1203 (2011)

    Article  CAS  Google Scholar 

  21. Bates, R.B., Paabo, M., Robinson, R.A.: Interpretation of pH measurements in alcohol–water solvents. J. Phys. Chem. 67, 1833–1845 (1963)

    Article  CAS  Google Scholar 

  22. Gran, G.: Determination of the equivalence point in potentiometric titration. Analyst 77, 661–671 (1952)

    Article  CAS  Google Scholar 

  23. De Stefano, C., Princi, P., Rigano, C., Sammartono, S.: Computer analysis of equilibrium data in solution. ESAB2M: an improved version of the ESAB program. Ann. Chim (Rome) 77, 643–675 (1987)

    Google Scholar 

  24. Gans, P., Sabatini, A., Vacca, A.: Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43, 1739–1753 (1996)

    Article  CAS  Google Scholar 

  25. Bologni, L., Sabatini, A., Vacca, A.: Complex formation equilibria between 2-amino-2(hydroxymethyl)-1,3,-propanediol (tris, tham) and nickel(II), copper(II), zinc(II) and hydrogen ions in aqueous solutions. Inorg. Chim. Acta 69, 71–75 (1983)

    Article  CAS  Google Scholar 

  26. Wolfe, A., Shimer, G.H., Meehan, T.: Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry 26, 6392–6396 (1987)

    Article  CAS  Google Scholar 

  27. Stephanos, J.J.: Drug–protein interactions: Two-site binding of heterocyclic ligands to a monomeric hemoglobin. J. Inorg. Biochem. 62, 155–169 (1996)

    Article  CAS  Google Scholar 

  28. Dahloff, A.: Quinolones in antibiotics and chemotherapy. In: Shorfeldd, H. (ed.) Pharmacokinetics of Selected Antibacterial Agents, pp. 85–108. Karger, New York (1998)

    Google Scholar 

  29. Sigel, H.: Metal Ions in Biological Systems. Marcel Dekker Inc., New York (1979)

    Google Scholar 

  30. Lippared, S.J.: Progress in Inorganic Chemistry, vol. 37, pp. 214–215. Wiley (1989)

  31. Smith, R.M., Martell, A.E., Chen, Y.: Critical evaluation of stability constants for nucleotide complexes with protons and metal ions and the accompanying enthalpy changes. Pure Appl. Chem. 63, 1015–1080 (1991)

    CAS  Google Scholar 

  32. Connors, T.A., Roberts, J.J.: Platinum Coordination Complexes in Cancer Chemotherapy. Springer, New York (1974)

    Book  Google Scholar 

  33. Martin, R.B., Mariam, Y.H.: Metal Ions in Biological Systems, vol. 8, pp. 57–124. Marcel Dekker, New York (1979)

    Google Scholar 

  34. Martin, R.B.: Nucleoside sites for transition metal ion binding. Acct. Chem. Res. 18, 32–38 (1985)

    Article  CAS  Google Scholar 

  35. Hodgson, D.J.: The stereochemistry of metal complexes of nucleic acid constituents. Prog. Inorg. Chem. 23, 211–254 (1977)

    CAS  Google Scholar 

  36. Urbaniak, B., Kokot, Z.J.: Spectroscopic investigations of fluoroquinolones metal ion complexes. Acta Pol. Pharm. 70, 621–629 (2013)

    CAS  Google Scholar 

  37. Ploeser, J.M., Loring, H.S.: The Ultraviolet absorption spectra of the pyrimidine ribonucleosides and ribonucleotides. J. Biol. Chem. 178, 431–437 (1949)

    CAS  Google Scholar 

  38. Chaveerach, U., Meenongwa, A., Trongpanich, Y., Soikum, C., Chaveerach, P.: DNA binding and cleavage behaviors of copper(II) complexes with amidino-O-methylurea and N-methylphenyl-amidino-O-methylurea, and their antibacterial activities. Polyhedron 29, 731–738 (2010)

    Article  CAS  Google Scholar 

  39. Anupama, B., Aruna, A., Jhansi Lakshmi, P., Swapna, V.: Synthesis, characterization of metal complexes with anthranilic acid based Schiff base: DNA binding, cleavage, antimicrobial, antioxidative and BSA binding studies. Int. J. Inorg. Bioinorg. Chem. 6, 11–22 (2016)

    Google Scholar 

  40. Satyanarayana, S., Dabrowiak, J.C., Chaires, J.B.: Neither Δ- nor Λ-tris(phenanthroline) ruthenium(II) binds to DNA by classical intercalation. Biochemistry 31, 9319–9324 (1992)

    Article  CAS  Google Scholar 

  41. Chaires, J.B., Dattagupta, N., Crothers, D.M.: Studies on interaction of anthracycline antibiotics and deoxyribonucleic acid: equilibrium binding studies on the interaction of daunomycin with deoxyribonucleic acid. Biochemistry 21, 3933–3940 (1982)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. M. Kamel or A. A. El-Sayed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamel, R.M., Hegazy, W.H., Ali, R.S. et al. Sparfloxacin Metal Complexes with Nucleosides: Potentiometric and Spectral Studies. J Solution Chem 46, 1680–1697 (2017). https://doi.org/10.1007/s10953-017-0669-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0669-9

Keywords

Navigation