Skip to main content
Log in

Solubility and Preferential Solvation of Caffeine and Theophylline in {Methanol + Water} Mixtures at 298.15 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Solubility is a very important property of drugs involved in purification processes and the different pharmaceutical dosage form design stages. Otherwise, caffeine and theophylline are alkaloid drugs widely used in several solid and liquid pharmaceutical formulations. The equilibrium solubility of caffeine and theophylline were determined in {methanol + water} binary mixtures at 298.15 K by means of the shaken flask method and both mass balance and UV spectrophotometric composition analyses. Solubility is expressed in both molarity and mole fraction. Maximum solubility of both drugs is observed in a mixture of similar proportions of methanol and water instead of the neat cosolvent. All these solubility values were correlated with the JouybanAcree model. Preferential solvation parameters by methanol (δx 1,3) of these xanthines were derived from their thermodynamic solution properties by using the inverse Kirkwood–Buff integrals method. For both compounds the δx 1,3 values are negative in water-rich and methanol-rich mixtures but positive in mixtures with almost the same proportion of methanol and water. It is conjectured that in the former case the hydrophobic hydration around non-polar groups of these drugs plays a relevant role in the solvation. Besides, the preferential solvation of these solutes by methanol in mixtures of similar cosolvent compositions could be explained in terms of the higher basicity of methanol compared to water. Finally, the preferential solvation by water in methanol-rich mixtures could be a consequence of the higher acidity of water compared to methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Martin, A., Bustamante, P., Chun, A.H.C.: Physical Chemical Principles in the Pharmaceutical Sciences, 4th edn. Lea & Febiger, Philadelphia (1993)

    Google Scholar 

  2. Jouyban, A.: Handbook of Solubility Data for Pharmaceuticals. CRC Press, Boca Raton (2010)

    Google Scholar 

  3. Marcus, Y.: Solvent Mixtures: Properties and Selective Solvation. Dekker, New York (2002)

    Google Scholar 

  4. Marcus, Y.: On the preferential solvation of drugs and PAHs in binary solvent mixtures. J. Mol. Liq. 140, 61–67 (2008)

    Article  CAS  Google Scholar 

  5. Budavari, S., O’Neil, M.J., Smith, A., Heckelman, P.E., Obenchain Jr., J.R., Gallipeau, J.A.R., D’Arecea, M.A.: The Merck Index, An Encyclopedia of Chemicals, Drugs, and Biologicals, 13th edn. Merck & Co. Inc., Whitehouse Station, NJ (2001)

    Google Scholar 

  6. Adjei, A., Newburger, J., Martin, A.: Extended Hildebrand approach. Solubility of caffeine in dioxane–water mixtures. J. Pharm. Sci. 69, 659–661 (1980)

    Article  CAS  Google Scholar 

  7. Martin, A., Newburger, J., Adjei, A.: Extended Hildebrand solubility approach: solubility of theophylline in polar binary solvents. J. Pharm. Sci. 69, 487–491 (1980)

    Article  CAS  Google Scholar 

  8. Khossravi, D., Connors, K.A.: Solvent effects on chemical processes. I: solubility of aromatic and heterocyclic compounds in binary aqueous-organic solvents. J. Pharm. Sci. 81, 371–379 (1992)

    Article  CAS  Google Scholar 

  9. Herrador, M.A., Gonzalez, A.G.: Solubility prediction of caffeine in aqueous N,N-dimethylformamide mixtures using the extended Hildebrand solubility approach. Int. J. Pharm. 156, 239–244 (1997)

    Article  CAS  Google Scholar 

  10. Bustamante, P., Navarro, J., Romero, S., Escalera, B.: Thermodynamic origin of the solubility profile of drugs showing one or two maxima against the polarity of aqueous and nonaqueous mixtures: niflumic acid and caffeine. J. Pharm. Sci. 91, 874–883 (2002)

    Article  CAS  Google Scholar 

  11. Liu, C., Dang, L., Bai, W., Wang, R., Wei, H.: Solid–liquid equilibrium of theophylline in solvent mixtures. J. Chem. Eng. Data 59, 263–268 (2014)

    Article  Google Scholar 

  12. Jouyban, A.: Review of the cosolvency models for predicting solubility of drugs in water–cosolvent mixtures. J. Pharm. Pharm. Sci. 11, 32–58 (2008)

    Article  CAS  Google Scholar 

  13. Cárdenas, Z.J., Jiménez, D.M., Rodríguez, G.A., Delgado, D.R., Martínez, F., Khoubnasabjafari, M., Jouyban, A.: Solubility of methocarbamol in several binary cosolvent + water mixtures at 298.15 K and correlation with the Jouyban-Acree model. J. Mol. Liq. 188, 162–166 (2013)

    Article  Google Scholar 

  14. Jiménez, D.M., Cárdenas, Z.J., Delgado, D.R., Martínez, F., Jouyban, A.: Preferential solvation of methocarbamol in aqueous binary cosolvent mixtures at 298.15 K. Phys. Chem. Liq. 52, 726–737 (2014)

    Article  Google Scholar 

  15. Delgado, D.R., Jouyban, A., Martínez, F.: Solubility and preferential solvation of meloxicam in methanol + water mixtures at 298.15 K. J. Mol. Liq. 197, 368–373 (2014)

    Article  CAS  Google Scholar 

  16. Jiménez, D.M., Muñoz, M.M., Rodríguez, C.J., Cárdenas, Z.J., Martínez, F.: Solubility and preferential solvation of some non-steroidal anti-inflammatory drugs in methanol + water mixtures at 298.15 K. Phys. Chem. Liq. 54, 686–702 (2016)

    Article  Google Scholar 

  17. Muñoz, M.M., Jouyban, A., Martínez, F.: Solubility and preferential solvation of acetaminophen in methanol + water mixtures at 298.15 K. Phys. Chem. Liq. 54, 515–528 (2016)

    Article  Google Scholar 

  18. Cárdenas, Z.J., Almanza, O.A., Jouyban, A., Martínez, F., Acree Jr., W.E.: Solubility and preferential solvation of phenacetin in methanol + water mixtures at 298.15 K. Phys. Chem. Liq. (2016). doi:10.1080/00319104.2016.1233185

    Google Scholar 

  19. Delgado, D.R., Martínez, F.: Solubility and preferential solvation of sulfadiazine in methanol + water mixtures at several temperatures. Fluid Phase Equilib. 379, 128–138 (2014)

    Article  CAS  Google Scholar 

  20. Delgado, D.R., Martínez, F.: Solution thermodynamics and preferential solvation of sulfamerazine in some methanol + water mixtures. J. Solution Chem. 44, 360–377 (2015)

    Article  CAS  Google Scholar 

  21. Delgado, D.R., Almanza, O.A., Martínez, F., Peña, M.A., Jouyban, A., Acree Jr., W.E.: Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures. J. Chem. Thermodyn. 97, 264–276 (2016)

    Article  CAS  Google Scholar 

  22. Cárdenas, Z.J., Jiménez, D.M., Almanza, O.A., Jouyban, A., Martínez, F., Acree Jr., W.E.: Solubility and preferential solvation of sulfanilamide, sulfamethizole and sulfapyridine in methanol + water mixtures at 298.15 K. J. Solution Chem. 45, 1479–1503 (2016)

    Article  Google Scholar 

  23. Cárdenas, Z.J., Jiménez, D.M., Delgado, D.R., Almanza, O.A., Jouyban, A., Martínez, F., Acree Jr., W.E.: Solubility and preferential solvation of some n-alkyl parabens in methanol + water mixtures at 298.15 K. J. Chem. Thermodyn. 108, 26–37 (2017)

    Article  Google Scholar 

  24. Tewes, F., Boury, F., Benoit, J.P.: Biodegradable microspheres: advances in production technology. In: Benita, S. (ed.) Microencapsulation: Methods and Industrial Applications, 2nd edn. Taylor & Francis Group, LLC, New York (2006). (Chap. 1)

    Google Scholar 

  25. Kazakevich, Y., LoBrutto, R.: HPLC for Pharmaceutical Scientists. Wiley, Hoboken, NJ (2007)

    Book  Google Scholar 

  26. Pallewela, G.N., Smith, P.E.: Preferential solvation in binary and ternary mixtures. J. Phys. Chem. B 119, 15706–15717 (2015)

    Article  CAS  Google Scholar 

  27. Yalkowsky, S.H., He, Y.: Handbook of Aqueous Solubility Data. CRC Press, Boca Raton, FL (2003)

    Book  Google Scholar 

  28. Shalmashi, A., Golmohammad, F.: Solubility of caffeine in water, ethyl acetate, ethanol, carbon tetrachloride, methanol, chloroform, dichloromethane, and acetone between 298 and 323 K. Lat. Am. Appl. Res. 40, 283–285 (2010)

    CAS  Google Scholar 

  29. Jelvehgari, M., Barar, J., Nokhodchi, A., Shadrou, S., Valizadeh, H.: Effects of process variables on micromeritic properties and drug release of non-degradable microparticles. Adv. Pharm. Bull. 1, 18–26 (2011)

    Google Scholar 

  30. Guo, K., Sadiq, G., Seaton, C., Davey, R., Yin, Q.: Co-crystallization in the caffeine/maleic acid system: lessons from phase equilibria. Cryst Growth Des 10, 268–273 (2010)

    Article  CAS  Google Scholar 

  31. Lu, E., Rodríguez-Hornedo, N., Suryanarayanan, R.: A rapid thermal method for cocrystal screening. CrystEngComm 10, 665–668 (2008)

    Article  CAS  Google Scholar 

  32. Pinto, S.S., Diogo, H.P.: Thermochemical study of two anhydrous polymorphs of caffeine. J. Chem. Thermodyn. 38, 1515–1522 (2006)

    Article  CAS  Google Scholar 

  33. Epple, M., Cammenga, H.K., Sarge, S.M., Diedrich, R., Balek, V.: The phase transformation of caffeine: investigation by dynamic X-ray diffraction and emanation thermal analysis. Thermochim. Acta 250, 29–39 (1995)

    Article  CAS  Google Scholar 

  34. Szterner, P., Legendre, B., Sghaier, M.: Thermodynamic properties of polymorphic forms of theophylline. Part I: DSC, TG, X-ray study. J. Therm. Anal. Calorim. 99, 325–335 (2010)

    Article  CAS  Google Scholar 

  35. Yalkowsky, S.H., Roseman, T.J.: Solubilization of drugs by cosolvents. In: Yalkowsky, S.H. (ed.) Techniques of Solubilization of Drugs. Marcel Dekker, New York (1981). (Chap. 3)

    Google Scholar 

  36. Machatha, S.G., Bustamante, P., Yalkowsky, S.H.: Deviation from linearity of drug solubility in ethanol/water mixtures. Int. J. Pharm. 283, 83–88 (2004)

    Article  CAS  Google Scholar 

  37. Jouyban-Gharamaleki, A., Valaee, L., Barzegar-Jalali, M., Clark, B.J., Acree Jr., W.E.: Comparison of various cosolvency models for calculating solute solubility in water–cosolvent mixtures. Int. J. Pharm. 177, 93–101 (1999)

    Article  CAS  Google Scholar 

  38. Jouyban-Gharamaleki, A.: The modified Wilson model and predicting drug solubility in water–cosolvent mixtures. Chem. Pharm. Bull. (Tokyo) 46, 1058–1061 (1998)

    Article  CAS  Google Scholar 

  39. Jouyban-Gharamaleki, A., Dastmalchi, S., Chan, H.K., Hanaee, J., Javanmard, A., Barzegar-Jalali, M.: Solubility prediction for furosemide in water–cosolvent mixtures using the minimum number of experiments. Drug Dev. Ind. Pharm. 27, 577–583 (2001)

    Article  CAS  Google Scholar 

  40. Jouyban, A., Chew, N.Y.K., Chan, H.K., Khoubnasabjafari, M., Acree Jr., W.E.: Solubility prediction of salicylic acid in water–ethanol–propylene glycol mixtures using the Jouyban-Acree model. Pharmazie 61, 417–419 (2006)

    Google Scholar 

  41. Jouyban, A., Chan, H.K., Chew, N.Y.K., Khoubnasabjafari, M., Acree Jr., W.E.: Solubility prediction of paracetamol in binary and ternary solvent mixtures using Jouyban-Acree model. Chem. Pharm. Bull. (Tokyo) 54, 428–431 (2006)

    Article  CAS  Google Scholar 

  42. Jouyban-Gharamaleki, A., Acree Jr., W.E.: Comparison of models for describing multiple peaks in solubility profiles. Int. J. Pharm. 167, 177–182 (1998)

    Article  CAS  Google Scholar 

  43. Jouyban-Gharamaleki, A., Hanaee, J.: A novel method for improvement of predictability of the CNIBS/R-K equation. Int. J. Pharm. 154, 245–247 (1997)

    Article  CAS  Google Scholar 

  44. Jouyban, A., Soltanpour, S., Soltani, S., Tamizi, E., Fakhree, M.A.A., Acree Jr., W.E.: Prediction of drug solubility in mixed solvents using computed Abraham parameters. J. Mol. Liq. 146, 82–88 (2009)

    Article  CAS  Google Scholar 

  45. Li, A., Yalkowsky, S.H.: Predicting cosolvency. 1. Solubility ratio and solute logK ow. Ind. Eng. Chem. Res. 37, 4470–4475 (1998)

    Article  CAS  Google Scholar 

  46. Avila, C.M., Martínez, F.: Thermodynamic study of the solubility of benzocaine in some organic and aqueous solvents. J. Solution Chem. 31, 975–985 (2002)

    Article  CAS  Google Scholar 

  47. Delgado, D.R., Romdhani, A., Martínez, F.: Thermodynamics of sulfanilamide solubility in propylene glycol + water mixtures. Lat. Am. J. Pharm. 30, 2024–2030 (2011)

    CAS  Google Scholar 

  48. Delgado, D.R., Romdhani, A., Martínez, F.: Solubility of sulfamethizole in some propylene glycol + water mixtures at several temperatures. Fluid Phase Equilib. 322–323, 113–119 (2012)

    Article  Google Scholar 

  49. Kristl, A., Vesnaver, G.: Thermodynamic investigation of the effect of octanol–water mutual miscibility on the partitioning and solubility of some guanine derivatives. J. Chem. Soc. Faraday Trans. I 91, 995–998 (1995)

    Article  CAS  Google Scholar 

  50. Barton, A.F.M.: Handbook of Solubility Parameters and Other Cohesion Parameters, 2nd edn. CRC Press, New York (1991)

    Google Scholar 

  51. Mora, C.P., Martínez, F.: Thermodynamic quantities relative to solution processes of naproxen in aqueous media at pH 1.2 and 7.4. Phys. Chem. Liq. 44, 585–596 (2006)

    Article  CAS  Google Scholar 

  52. Fedors, R.F.: A method for estimating both the solubility parameters and molar volumes of liquids. Polym. Eng. Sci. 14, 147–154 (1974)

    Article  CAS  Google Scholar 

  53. Ben-Naim, A.: Preferential solvation in two- and in three-component systems. Pure Appl. Chem. 62, 25–34 (1990)

    Article  CAS  Google Scholar 

  54. Peña, M.Á., Delgado, D.R., Martínez, F.: Preferential solvation of some n-alkyl p-substituted-benzoates in propylene glycol + water co-solvent mixtures. Phys. Chem. Liq. 53, 455–466 (2015)

    Article  Google Scholar 

  55. Kamlet, M.J., Taft, R.W.: The solvatochromic comparison method. I. The beta-scale of solvent hydrogen-bond acceptor (HBA) basicities. J. Am. Chem. Soc. 98, 377–383 (1976)

    Article  CAS  Google Scholar 

  56. Marcus, Y.: The Properties of Solvents. Wiley, Chichester, UK (1998)

    Google Scholar 

  57. Taft, R.W., Kamlet, M.J.: The solvatochromic comparison method. II. The alpha-scale of solvent hydrogen-bond donor (HBD) acidities. J. Am. Chem. Soc. 98, 2886–2894 (1976)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Departments of Pharmacy and Physics of the National University of Colombia for facilitating the equipment and laboratories used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fleming Martínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cárdenas, Z.J., Jiménez, D.M., Almanza, O.A. et al. Solubility and Preferential Solvation of Caffeine and Theophylline in {Methanol + Water} Mixtures at 298.15 K. J Solution Chem 46, 1605–1624 (2017). https://doi.org/10.1007/s10953-017-0666-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0666-z

Keywords

Navigation