Skip to main content
Log in

Solubility and Dissolution Thermodynamic Data of Cefpiramide in Pure Solvents and Binary Solvents

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

A Commentary to this article was published on 24 January 2018

Abstract

The solubility of cefpiramide in five pure solvents (water, ethanol, 1-propanol, 2-propanol, and 1-butanol) and two binary solvent systems (water + ethanol or water + 2-propanol) was measured by a steady-state method, from 278.2 to 303.2 K, under atmospheric pressure. The initial mole fraction of alcohol (ethanol or 2-propanol) in the binary systems ranged from 0 to 1. It is found that the solubility increases with increasing temperature in the experimental range and shows a quasi-S-shaped curve with the increase of the initial mole fraction of alcohol. The modified Apelblat equation was used to simulate the solubility data, and gives a maximum mean relative deviation (MRD) of 0.47% for the single solvent systems, and a maximum MRD of 1.03 and 1.15% for the ethanol + water and 2-propanol + water systems, respectively. The combined model of the Jouyban–Acree and modified Apelblat equations, both temperature-dependent and solvent-composition-dependent, was simplified to correlate the solubility data of binary solvent mixtures in the initial mole fraction range of alcohol from 0 to 0.9, and gives a MRD of 9.83 and 6.49% for the ethanol +water and 2-propanol + water systems, respectively. The dissolution thermodynamic properties in the pure solvents and two binary mixtures were calculated based on the van’t Hoff equation. The calculation results indicate that the dissolution process of cefpiramide is endothermic in the pure solvents, and entropically driven in the four alcohols but not in water. The dissolution process is endothermic in the two binary mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kato, M., Inoue, M., Mitsuhashi, M.: Antibacterial activities of SM-1652 compared with those of other broad-spectrum cephalosporins. Antimicrob. Agents Chemother. 22, 721–727 (1982)

    Article  CAS  Google Scholar 

  2. Alan, J.D., Eliopoulos, G.M., Ferraro, M.J., Moellering, R.C.: Comparative in vitro activities of cefpiramide and apalcillin individually and in combination. Antimicrob. Agents Chemother. 27, 782–790 (1985)

    Article  Google Scholar 

  3. Barry, A.L., Jones, R.N., Thornsberry, C., Fuchs, P.C., Ayers, L.W., Gavan, T.L., Gerlach, E.H., Sommers, H.M.: Cefpiramide: comparative in vitro activity and & β-lactamase stability. J. Antimicrob. Chemother. 16, 315–325 (1985)

    Article  CAS  Google Scholar 

  4. Fukasawa, M., Noguchi, H., Okuda, T., Komatsu, T., Yano, K.: In vitro antibacterial activity of SM-1652, a new broad-spectrum cephalosporin with anti-pseudomonal activity. Antimicrob. Agents Chemother. 23, 195–200 (1983)

    Article  CAS  Google Scholar 

  5. Pfaller, M.A., Niles, A.C., Murray, P.R.: In vitro antibacterial activity of cefpiramide. Antimicrob. Agents Chemother. 25, 368–372 (1984)

    Article  CAS  Google Scholar 

  6. Wexler, H., Carter, W.T., Harris, B., Finegold, G.M.: Comparative in vitro activities of cefpiramide and apalcillin against anaerobic bacteria. Antimicrob. Agents Chemother. 25, 162–164 (1984)

    Article  CAS  Google Scholar 

  7. Wang, M.J., Zou, W.B., Xue, J., Wang, Y., Hu, C.Q., Hoogmartens, J., Schepdael, A.V., Adams, E.: Thermostability comparison of two solid states of cefpiramide. J. Anal. Bioanal. 3, 142–148 (2012)

    CAS  Google Scholar 

  8. Tang, F.X., Guo, Z.L., Li, D.Q., Chen, H.Y., Zhao, S.Y.: Dissociation constant and solubility of (S)-2-hydroxy-4-phenylbutyric acid. J. Chem. Eng. Data 58, 1265–1270 (2013)

    Article  CAS  Google Scholar 

  9. Gordon, L.J., Scott, R.L.: Enhanced solubility in solvent mixtures. I. The system phenanthrene–cyclohexane–methylene iodide. J. Am. Chem. Soc. 74, 4138–4140 (1952)

    Article  CAS  Google Scholar 

  10. Zhang, J.Y., Zhang, P.P., Liu, T.T., Zhou, L., Zhang, L.Q., Lin, R., Yang, G.D., Wang, W.R., Li, Y.P.: Solubility of naringin in ethanol and water mixtures from 283.15 to 318.15 K. J. Mol. Liq. 203, 98–103 (2015)

    Article  CAS  Google Scholar 

  11. Yu, G.M., Wang, L.S., Du, C.J., Sun, J.: Solubilities of phosphoric acid, P, P´-1,4-phenylene P, P, P´, P´-tetraphenyl ester in the organic solvents. Fluid Phase Equilibr. 388, 6–15 (2015)

    Article  CAS  Google Scholar 

  12. Tang, F.X., Wu, S., Wu, F.Q., Zhao, S.Y.: Solubility of cefpiramide sodium in binary ethanol + water and 2-propanol + water solvent mixtures. J. Chem. Eng. Data 59, 56–60 (2014)

    Article  CAS  Google Scholar 

  13. Apelblat, A., Manzurola, E.: Solubilities of o-acetylsalicylic, 4-aminosalicylic, 3, 5-dinitrosalicylic, and p-toluic acid and magnesium-DL-aspartate in water from T = 278 to 348 K. Chem. Thermodyn. 31, 85–91 (1999)

    Article  CAS  Google Scholar 

  14. Jouyban-Gharamaleki, A., Acree Jr., W.E.: Comparison of models for describing multiple peaks in solubility profiles. Int. J. Pharm. 167, 177–182 (1998)

    Article  CAS  Google Scholar 

  15. Jouyban-Gharamaleki, A., Acree Jr., W.E.: In silico prediction of drug solubility in water–ethanol mixtures using Jouyban-Acree Model. J. Pharm. Pharm. Sci. 9, 262–269 (2006)

    Google Scholar 

  16. Jouyban, A.: Review of the cosolvency models for predicting solubility of drugs in water–cosolvent mixtures. J. Pharm. Pharmaceut. Sci. 11, 32–58 (2008)

    Article  CAS  Google Scholar 

  17. Fakhree, M.A.A., Ahmadian, S., Panahi-Azar, V., Acree Jr., W.E., Jouyban, A.: Solubility of 2-hydroxybenzoic acid in water, 1-propanol, 2-propanol, and 2-propanone at (298.2 to 338.2) K and their aqueous binary mixtures at 298.2 K. J. Chem. Eng. Data 57, 3303–3307 (2012)

    Article  CAS  Google Scholar 

  18. Ranjan, D., Hasan, S.H.: Parametric optimization of selenite and selenate biosorption using wheat bran in batch and continuous mode. J. Chem. Eng. Data 55, 4808–4816 (2010)

    Article  CAS  Google Scholar 

  19. Torné-Fernández, V., Mateo-Sanz, J.M., Montané, D., Fierro, V.: Statistical optimization of the synthesis of highly microporous carbons by chemical activation of Kraft lignin with NaOH. J. Chem. Eng. Data 54, 2216–2221 (2009)

    Article  Google Scholar 

  20. Grant, D.J.W., Mehdizadeh, M., Chow, A.H.L., Fairbrother, J.E.: Non-linear van’t Hoff solubility-temperature plots and their pharmaceutical interpretation. Int. J. Pharm. 18, 25–38 (1984)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants form the National Natural Science Foundation (No. 21375019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengxiang Tang or Suying Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, F., Wu, S. & Zhao, S. Solubility and Dissolution Thermodynamic Data of Cefpiramide in Pure Solvents and Binary Solvents. J Solution Chem 46, 1556–1574 (2017). https://doi.org/10.1007/s10953-017-0664-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0664-1

Keywords

Navigation