Polyvinylpyrrolidone Behavior in Water/Ethanol Mixed Solvents: Comparison of Modeling Predictions with Experimental Results

Abstract

The objective of this work is to study the behavior of a neutral polymer, polyvinylpyrrolidone (PVP), in a mixture of water and ethanol. A comparison of the experimental results with a theoretical model of effective solvent interaction with polymer (ESIP) was made. To do so, dynamic light scattering experiments were used to measure the hydrodynamic radius of PVP (M w = 3.6 × 105 g·mol−1) as a function of the ethanol fraction, x A, in the medium at 25 °C. We show that the polymer adopts an ideal chain–globule–coil conformation transition as the ethanol molar fraction varies. This transition is attributed to the change of the solvent quality which results from water and ethanol complex formation. On the other hand, the ternary PVP/water/ethanol system was described by the ESIP model. From the polymer–effective solvent interaction, the second virial coefficient of the polymer/effective solvent and the preferential adsorption parameter were calculated. The obtained results are in agreement with the reported experiments.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Maeda, Y., Higuchi, T., Ikeda, I.: Change in hydration state during the coil–globule transition of aqueous solutions of poly(N-isopropylacrylamide) as evidenced by FTIR spectroscopy. Langmuir 16, 7503–7509 (2000)

    CAS  Article  Google Scholar 

  2. 2.

    Fujishige, S., Kubota, K., Ando, I.: Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). J. Phys. Chem. 93, 3311–3313 (1989)

    CAS  Article  Google Scholar 

  3. 3.

    Sun, S.T., Nishio, I., Swislow, G., Tanaka, T.: The coil–globule transition: radius of gyration of polystyrene in cyclohexane. J. Chem. Phys. 73, 5971–5975 (1980)

    CAS  Article  Google Scholar 

  4. 4.

    Piçarra, S., Relógio, P., Afonso, C.A.M., Martinho, J.M.G., Farinha, J.P.S.: Coil–globule transition of poly(dimethylacrylamide): fluorescence and light scattering study. Macromolecules 36, 8119–8129 (2003)

    Article  Google Scholar 

  5. 5.

    Terada, T., Inaba, T., Kitano, H., Maeda, Y., Tsukida, N.: Raman spectroscopic study on water in aqueous solutions of temperature-responsive polymers: poly(N-isopropylacrylamide) and poly[N-(3-ethoxypropyl)acrylamide]. Macromol. Chem. Phys. 9, 3261–3270 (1994)

    Article  Google Scholar 

  6. 6.

    Guettari, M., Ajroudi, L., Tajouri, T., Bitar, A., Elaissari, H.: A temperature effect on the intrinsic viscosity of aqueous poly(N-vinylcaprolactam) solution. J. Colloid Sci. Biotechnol. 3, 351–354 (2014)

    CAS  Google Scholar 

  7. 7.

    Winnik, F.M., Ottaviani, F., Garibay, M.G., Turro, N.J.: Cononsolvency of poly(N4sopropylacrylamide) in mixed water–methanol solutions: a look at spin-labeled polymers. Macromolecules 25, 6007–6017 (1992)

    CAS  Article  Google Scholar 

  8. 8.

    Nakata, M.: Coil–globule transition of poly(methyl methacrylate) in a mixed solvent. Phys. Rev. E 51, 5770–5775 (1995)

    CAS  Article  Google Scholar 

  9. 9.

    Hoshino, H., Okada, S., Urakawa, H., Kajiwara, K.: Gelation of poly(vinyl alcohol) in dimethyl sulfoxide/water solvent. Polym. Bull. 37, 237–244 (1996)

    CAS  Article  Google Scholar 

  10. 10.

    Orakdogen, N., Okay, O.: Reentrant conformation transition in poly(N, N-dimethylacrylamide) hydrogels in water–organic solvent mixtures. Polymer 47, 561–568 (2006)

    CAS  Article  Google Scholar 

  11. 11.

    Zemb, T.N., Klossek, M., Lopian, T., Marcus, J., Schöettl, S., Horinek, D., Prevost, S.F., Touraud, D., Diat, O., Marčelja, S., Kunz, W.: How to explain microemulsions formed by solvent mixtures without conventional surfactants. Proc. Natl Acad. Sci. USA 113, 4260–4265 (2016)

    CAS  Article  Google Scholar 

  12. 12.

    Mukherji, D., Marques, C.M., Kremer, K.: Polymer collapse in miscible good solvents is a generic phenomenon driven by preferential adsorption. Nat. Commun. 5(4882), 1–16 (2014)

    Google Scholar 

  13. 13.

    Guettari, M., Gharbi, A.: A model to study the behavior of a polar polymer in the mixture of polar solvents. J. Macromol. Sci. Phys. B 49, 592–601 (2010)

    CAS  Article  Google Scholar 

  14. 14.

    Mark, J.E.: Polymer Data Handbook. Oxford University Press, New York (1999)

    Google Scholar 

  15. 15.

    Gargallo, L., Radic, D.: Interaction of polyvinylpyrrolidone with small cosolutes in aqueous and nonaqueous media. Polymer 24, 91–94 (1983)

    CAS  Article  Google Scholar 

  16. 16.

    Guettari, M., Aschi, A., Gomati, R., Gharbi, A.: Structural transition of a homopolymer in solvents mixture. Mater. Sci. Eng. C 28, 811–815 (2008)

    CAS  Article  Google Scholar 

  17. 17.

    Guettari, M., Gomati, R., Gharbi, A.: Effect of temperature on cononsolvency of polyvinylpyrrolidone in water/methanol mixture. J. Macromol. Sci. Phys. B 49, 552–562 (2010)

    CAS  Article  Google Scholar 

  18. 18.

    Ishiduki, K., Esumi, K.: Adsorption characteristics of poly(acrylic acid) and poly(vinylpyrrolidone) on alumina from their mixtures in aqueous solution. J. Colloid Interface Sci. 185, 274–277 (1997)

    CAS  Article  Google Scholar 

  19. 19.

    Mdluli, P.S., Sosibo, N.M., Mashazi, P.N., Nyokong, T., Tshikhudo, R.T., Skepu, A., van der Lingen, E.: Selective adsorption of PVP on the surface of silver nanoparticles: a molecular dynamics study. J. Mol. Struct. 1004, 131–137 (2011)

    CAS  Article  Google Scholar 

  20. 20.

    Ahn, J.S., Kim, K.M., Ko, C.Y., Kang, J.S.: Absorption enhancer and polymer (vitamin E TPGS and PVP K29) by solid dispersion improve dissolution and bioavailability of eprosartan mesylate. Bull. Korean Chem. Soc. 32, 1587–1592 (2011)

    CAS  Article  Google Scholar 

  21. 21.

    Khadka, P., Ro, J., Kim, H., Kim, I., Kim, J.T., Kim, H., Cho, J.M., Yun, G., Lee, J.: Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharm. Sci. 9, 304–316 (2014)

    Article  Google Scholar 

  22. 22.

    Richter, M., Hunnenmörder, M., Klitzing, R.V.: The impact of the cononsolvency effect on poly(N-isopropylacrylamide) based microgels at interfaces. Colloid Polym. Sci. 292, 2439–2452 (2014)

    CAS  Article  Google Scholar 

  23. 23.

    El Aferni, A., Guettari, M., Tajouri, T.: Effect of polymer conformation on polymer–surfactant interaction in salt-free water. J. Colloid Polym. Sci. 7, 1097–1106 (2016)

    Article  Google Scholar 

  24. 24.

    Yilmaz, H.: Excess properties of alcohol–water systems at 298.15 K. Turk. J. Phys. 26, 243–246 (2002)

    CAS  Google Scholar 

  25. 25.

    Pečar, D., Doleček, V.: Volumetric properties of ethanol–water mixtures under high temperatures and pressures. J. Fluid Phase Equilib. 230, 36–44 (2005)

    Article  Google Scholar 

  26. 26.

    Ghoufi, A., Artzner, F., Malfreyt, P.: Physical properties and hydrogen-bonding network of water–ethanol mixtures from molecular dynamics simulations. J. Phys. Chem. B 120, 793–802 (2016)

    CAS  Article  Google Scholar 

  27. 27.

    Osaka, N., Shibayama, M.: Pressure effects on cononsolvency behavior of poly(N-isopropylacrylamide) in water/DMSO mixed solvents. Macromolecules 45, 2171–2174 (2012)

    CAS  Article  Google Scholar 

  28. 28.

    Teraoka, I.: Polymer Solutions, Introduction to Physical Properties. Wiley-Interscience, New York (2002)

    Google Scholar 

  29. 29.

    Barton, A.F.M.: Handbook of Solubility Parameters and Other Cohesion Parameters, 2nd edn. CRC Press, Boca Raton (1992)

    Google Scholar 

  30. 30.

    Hert, M., Strazielle, C.: Determination de l’increment d’indice de refraction ‘dn/χδ de polymeres’ en solution dans des melanges de solvants. Relation entre ‘dn/χδ et le volume specifique’. Eur. Polym. J. 9, 543–557 (1973)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Tunisian Ministry of Education, Research and Technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Moez Guettari.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guettari, M., Belaidi, A., Abel, S. et al. Polyvinylpyrrolidone Behavior in Water/Ethanol Mixed Solvents: Comparison of Modeling Predictions with Experimental Results. J Solution Chem 46, 1404–1417 (2017). https://doi.org/10.1007/s10953-017-0649-0

Download citation

Keywords

  • Polymer
  • Mixed solvents
  • Dynamic light scattering
  • Effective solvent
  • Model