Journal of Solution Chemistry

, Volume 46, Issue 7, pp 1404–1417 | Cite as

Polyvinylpyrrolidone Behavior in Water/Ethanol Mixed Solvents: Comparison of Modeling Predictions with Experimental Results

  • Moez Guettari
  • Amal Belaidi
  • Stéphane Abel
  • Tahar Tajouri
Article
  • 111 Downloads

Abstract

The objective of this work is to study the behavior of a neutral polymer, polyvinylpyrrolidone (PVP), in a mixture of water and ethanol. A comparison of the experimental results with a theoretical model of effective solvent interaction with polymer (ESIP) was made. To do so, dynamic light scattering experiments were used to measure the hydrodynamic radius of PVP (Mw = 3.6 × 105 g·mol−1) as a function of the ethanol fraction, xA, in the medium at 25 °C. We show that the polymer adopts an ideal chain–globule–coil conformation transition as the ethanol molar fraction varies. This transition is attributed to the change of the solvent quality which results from water and ethanol complex formation. On the other hand, the ternary PVP/water/ethanol system was described by the ESIP model. From the polymer–effective solvent interaction, the second virial coefficient of the polymer/effective solvent and the preferential adsorption parameter were calculated. The obtained results are in agreement with the reported experiments.

Keywords

Polymer Mixed solvents Dynamic light scattering Effective solvent Model 

Notes

Acknowledgements

The authors gratefully acknowledge financial support from the Tunisian Ministry of Education, Research and Technology.

References

  1. 1.
    Maeda, Y., Higuchi, T., Ikeda, I.: Change in hydration state during the coil–globule transition of aqueous solutions of poly(N-isopropylacrylamide) as evidenced by FTIR spectroscopy. Langmuir 16, 7503–7509 (2000)CrossRefGoogle Scholar
  2. 2.
    Fujishige, S., Kubota, K., Ando, I.: Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). J. Phys. Chem. 93, 3311–3313 (1989)CrossRefGoogle Scholar
  3. 3.
    Sun, S.T., Nishio, I., Swislow, G., Tanaka, T.: The coil–globule transition: radius of gyration of polystyrene in cyclohexane. J. Chem. Phys. 73, 5971–5975 (1980)CrossRefGoogle Scholar
  4. 4.
    Piçarra, S., Relógio, P., Afonso, C.A.M., Martinho, J.M.G., Farinha, J.P.S.: Coil–globule transition of poly(dimethylacrylamide): fluorescence and light scattering study. Macromolecules 36, 8119–8129 (2003)CrossRefGoogle Scholar
  5. 5.
    Terada, T., Inaba, T., Kitano, H., Maeda, Y., Tsukida, N.: Raman spectroscopic study on water in aqueous solutions of temperature-responsive polymers: poly(N-isopropylacrylamide) and poly[N-(3-ethoxypropyl)acrylamide]. Macromol. Chem. Phys. 9, 3261–3270 (1994)CrossRefGoogle Scholar
  6. 6.
    Guettari, M., Ajroudi, L., Tajouri, T., Bitar, A., Elaissari, H.: A temperature effect on the intrinsic viscosity of aqueous poly(N-vinylcaprolactam) solution. J. Colloid Sci. Biotechnol. 3, 351–354 (2014)Google Scholar
  7. 7.
    Winnik, F.M., Ottaviani, F., Garibay, M.G., Turro, N.J.: Cononsolvency of poly(N4sopropylacrylamide) in mixed water–methanol solutions: a look at spin-labeled polymers. Macromolecules 25, 6007–6017 (1992)CrossRefGoogle Scholar
  8. 8.
    Nakata, M.: Coil–globule transition of poly(methyl methacrylate) in a mixed solvent. Phys. Rev. E 51, 5770–5775 (1995)CrossRefGoogle Scholar
  9. 9.
    Hoshino, H., Okada, S., Urakawa, H., Kajiwara, K.: Gelation of poly(vinyl alcohol) in dimethyl sulfoxide/water solvent. Polym. Bull. 37, 237–244 (1996)CrossRefGoogle Scholar
  10. 10.
    Orakdogen, N., Okay, O.: Reentrant conformation transition in poly(N, N-dimethylacrylamide) hydrogels in water–organic solvent mixtures. Polymer 47, 561–568 (2006)CrossRefGoogle Scholar
  11. 11.
    Zemb, T.N., Klossek, M., Lopian, T., Marcus, J., Schöettl, S., Horinek, D., Prevost, S.F., Touraud, D., Diat, O., Marčelja, S., Kunz, W.: How to explain microemulsions formed by solvent mixtures without conventional surfactants. Proc. Natl Acad. Sci. USA 113, 4260–4265 (2016)CrossRefGoogle Scholar
  12. 12.
    Mukherji, D., Marques, C.M., Kremer, K.: Polymer collapse in miscible good solvents is a generic phenomenon driven by preferential adsorption. Nat. Commun. 5(4882), 1–16 (2014)Google Scholar
  13. 13.
    Guettari, M., Gharbi, A.: A model to study the behavior of a polar polymer in the mixture of polar solvents. J. Macromol. Sci. Phys. B 49, 592–601 (2010)CrossRefGoogle Scholar
  14. 14.
    Mark, J.E.: Polymer Data Handbook. Oxford University Press, New York (1999)Google Scholar
  15. 15.
    Gargallo, L., Radic, D.: Interaction of polyvinylpyrrolidone with small cosolutes in aqueous and nonaqueous media. Polymer 24, 91–94 (1983)CrossRefGoogle Scholar
  16. 16.
    Guettari, M., Aschi, A., Gomati, R., Gharbi, A.: Structural transition of a homopolymer in solvents mixture. Mater. Sci. Eng. C 28, 811–815 (2008)CrossRefGoogle Scholar
  17. 17.
    Guettari, M., Gomati, R., Gharbi, A.: Effect of temperature on cononsolvency of polyvinylpyrrolidone in water/methanol mixture. J. Macromol. Sci. Phys. B 49, 552–562 (2010)CrossRefGoogle Scholar
  18. 18.
    Ishiduki, K., Esumi, K.: Adsorption characteristics of poly(acrylic acid) and poly(vinylpyrrolidone) on alumina from their mixtures in aqueous solution. J. Colloid Interface Sci. 185, 274–277 (1997)CrossRefGoogle Scholar
  19. 19.
    Mdluli, P.S., Sosibo, N.M., Mashazi, P.N., Nyokong, T., Tshikhudo, R.T., Skepu, A., van der Lingen, E.: Selective adsorption of PVP on the surface of silver nanoparticles: a molecular dynamics study. J. Mol. Struct. 1004, 131–137 (2011)CrossRefGoogle Scholar
  20. 20.
    Ahn, J.S., Kim, K.M., Ko, C.Y., Kang, J.S.: Absorption enhancer and polymer (vitamin E TPGS and PVP K29) by solid dispersion improve dissolution and bioavailability of eprosartan mesylate. Bull. Korean Chem. Soc. 32, 1587–1592 (2011)CrossRefGoogle Scholar
  21. 21.
    Khadka, P., Ro, J., Kim, H., Kim, I., Kim, J.T., Kim, H., Cho, J.M., Yun, G., Lee, J.: Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharm. Sci. 9, 304–316 (2014)CrossRefGoogle Scholar
  22. 22.
    Richter, M., Hunnenmörder, M., Klitzing, R.V.: The impact of the cononsolvency effect on poly(N-isopropylacrylamide) based microgels at interfaces. Colloid Polym. Sci. 292, 2439–2452 (2014)CrossRefGoogle Scholar
  23. 23.
    El Aferni, A., Guettari, M., Tajouri, T.: Effect of polymer conformation on polymer–surfactant interaction in salt-free water. J. Colloid Polym. Sci. 7, 1097–1106 (2016)CrossRefGoogle Scholar
  24. 24.
    Yilmaz, H.: Excess properties of alcohol–water systems at 298.15 K. Turk. J. Phys. 26, 243–246 (2002)Google Scholar
  25. 25.
    Pečar, D., Doleček, V.: Volumetric properties of ethanol–water mixtures under high temperatures and pressures. J. Fluid Phase Equilib. 230, 36–44 (2005)CrossRefGoogle Scholar
  26. 26.
    Ghoufi, A., Artzner, F., Malfreyt, P.: Physical properties and hydrogen-bonding network of water–ethanol mixtures from molecular dynamics simulations. J. Phys. Chem. B 120, 793–802 (2016)CrossRefGoogle Scholar
  27. 27.
    Osaka, N., Shibayama, M.: Pressure effects on cononsolvency behavior of poly(N-isopropylacrylamide) in water/DMSO mixed solvents. Macromolecules 45, 2171–2174 (2012)CrossRefGoogle Scholar
  28. 28.
    Teraoka, I.: Polymer Solutions, Introduction to Physical Properties. Wiley-Interscience, New York (2002)Google Scholar
  29. 29.
    Barton, A.F.M.: Handbook of Solubility Parameters and Other Cohesion Parameters, 2nd edn. CRC Press, Boca Raton (1992)Google Scholar
  30. 30.
    Hert, M., Strazielle, C.: Determination de l’increment d’indice de refraction ‘dn/χδ de polymeres’ en solution dans des melanges de solvants. Relation entre ‘dn/χδ et le volume specifique’. Eur. Polym. J. 9, 543–557 (1973)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Moez Guettari
    • 1
    • 4
  • Amal Belaidi
    • 1
    • 2
  • Stéphane Abel
    • 3
  • Tahar Tajouri
    • 1
  1. 1.NMR in Polymers and Composites LaboratoryUniversity of TunisTunisTunisia
  2. 2.Faculty of Science of BizerteUniversity of CarthageCarthageTunisia
  3. 3.Institut de Biologie Intégrative de la Cellule (I2BC), Institut Frédéric Joliot, CEA, CNRS, Univ Paris-SudUniversité Paris-SaclayGif-Sur-Yvette CedexFrance
  4. 4.Laboratory of Soft Matter and Electromagnetic ModelingUniversity of Tunis El ManarTunisTunisia

Personalised recommendations