Abstract
Temperature dependent molar conductances and fluidities of bisulfate and ethyl sulfate anion-based ionic liquids were measured. The extent of dissociation of the ionic liquids was estimated from the Walden plot in term of ionicity. The ionicity mainly depends on the magnitude of Coulombic forces, altered by the anion’s Lewis basicity. Aqueous solutions of aprotic ionic liquids, in general, possesses ionicity in the range of ≈70–99%. This article reveals that the substitution of the anion by bisulfate and ethylsulfate reduces the ionicity of aqueous solution of these ionic liquids to the range of 10–37%. This is very close to that exhibited by some of the protic ionic liquids and phosphonium based ionic liquids with sweetner anions. The concentration dependent molar conductance of these ionic liquids has been fitted to Mahiuddin and Ismail’s equation. To our surprise, the molar conductances of bisulfate-based aprotic ionic liquids are remarkably high, even though these ionic liquids possess lower ionicity.
Similar content being viewed by others
References
Welton, T.: Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)
Hallett, J.P., Welton, T.: Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev. 111, 3508–3576 (2011)
Wasserscheid, P., Welton, T.: Ionic Liquids in Synthesis, pp. 689–704. Wiley, Weinheim (2008)
Dupont, J., Suarez, P.A.Z.: Physico-chemical processes in imidazolium ionic liquids. Phys. Chem. Chem. Phys. 8, 2441–2452 (2006)
Weingartner, H.: Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew. Chem. Int. Ed. Engl. 47, 654–670 (2008)
Sheldon, R.: Catalytic reactions in ionic liquids. Chem. Commun. 23, 2399–2407 (2001)
Yang, H., Gu, Y., Deng, Y., Shi, F.: Electrochemical activation of carbon dioxide in ionic liquid: synthesis of cyclic carbonates at mild reaction conditions. Chem. Commun. 3, 274–275 (2002)
MacFarlane, D.R., Tachikawa, N., Forsyth, M., Pringle, J.M., Howlett, P.C., Elliott, G.D., Davis, J.H., Watanabe, M., Simon, P., Angell, C.A.: Energy applications of ionic liquids. Energy Environ. Sci. 7, 232–250 (2014)
Bayley, P.M., Lane, G.H., Rocher, N.M., Clare, B.R., Best, A.S., MacFarlane, D.R., Forsyth, M.: Transport properties of ionic liquid electrolytes with organic diluents. Phys. Chem. Chem. Phys. 11, 7202–7208 (2009)
Gebresilassie Eshetu, G., Armand, M., Scrosati, B., Passerini, S.: Energy storage materials synthesized from ionic liquids. Angew. Chem. Int. Ed. Engl. 53, 13342–13359 (2014)
Angell, C.A., Xu, W., Belieres, J.P., Yoshizawa, M.: Ionic liquids and ionic liquid acids with high temperature stability for fuel cell and other high temperature applications, method of making and cell employing same. US Patent 7867658 B2 (2011)
Goodenough, J.B., Park, K.S.: The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013)
Wang, P., Zakeeruddin, S.M., Comte, P., Exnar, I., Gratzel, M.: Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J. Am. Chem. Soc. 125, 1166–1167 (2003)
Wang, P., Zakeeruddin, S.M., Exnar, I., Gratzel, M.: High efficiency dye-sensitized nano crystalline solar cells based on ionic liquid polymer gel electrolyte. Chem. Commun. 24, 2972–2973 (2002)
Yoshizawa, M., Xu, W., Angell, C.A.: Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of ∆pKa from aqueous solutions. J. Am. Chem. Soc. 125, 15411–15419 (2003)
Xu, W., Cooper, E.I., Angell, C.A.: Ionic liquids: ion mobilities, glass temperatures, and fragilities. J. Phys. Chem. B 107, 6170–6178 (2003)
Angell, C.A., Byrne, N., Belieres, J.P.: Parallel developments in aprotic and protic ionic liquids: physical chemistry and applications. Acc. Chem. Res. 40, 1228–1236 (2007)
Fraser, K.J., Izgorodina, E.I., Forsyth, M., Scott, J.L., MacFarlane, D.R.: Liquids intermediate between “molecular” and “ionic” liquids: liquid ion pairs? Chem. Commun. 37, 3817–3819 (2007)
Zhao, C., Burrell, G., Torriero, A.A., Separovic, F., Dunlop, N.F., MacFarlane, D.R., Bond, A.M.: Electrochemistry of room temperature protic ionic liquids. J. Phys. Chem. B 112, 6923–6936 (2008)
MacFarlane, D.R., Forsyth, M., Izgorodina, E.I., Abbott, A.P., Annat, G., Fraser, K.: On the concept of ionicity in ionic liquids. Phys. Chem. Chem. Phys. 11, 4962–4967 (2009)
Thawarkar, S., Khupse, N.D., Kumar, A.: Solvent-mediated molar conductivity of protic ionic liquids. Phys. Chem. Chem. Phys. 17, 475–482 (2015)
Thawarkar, S., Khupse, N.D., Kumar, A.: Comparative investigation of the ionicity of aprotic and protic ionic liquids in molecular solvents by using conductometry and NMR spectroscopy. ChemPhysChem 17, 1006–1017 (2016)
Noda, A., Susan, M.A.B.H., Kudo, K., Mitsushima, S., Hayamizu, K., Watanabe, M.: Brønsted acid – base ionic liquids as proton-conducting nonaqueous electrolytes. J. Phys. Chem. B 107, 4024–4033 (2003)
Tokuda, H., Hayamizu, K., Ishii, K., Susan, M.A.B.H., Watanabe, M.: Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B 108, 16593–16600 (2004)
Tokuda, H., Hayamizu, K., Ishii, K., Susan, M.A.B.H., Watanabe, M.: Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J. Phys. Chem. B 109, 6103–6110 (2005)
Tokuda, H., Tsuzuki, S., Susan, M.A.B.H., Hayamizu, K., Watanabe, M.: How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J. Phys. Chem. B 110, 19593–19600 (2006)
Ueno, K., Tokuda, H., Watanabe, M.: Ionicity in ionic liquids: correlation with ionic structure and physicochemical properties. Phys. Chem. Chem. Phys. 12, 1649–1658 (2010)
Miran, M.S., Kinoshita, H., Yasuda, T., Susan, M.A.B.H., Watanabe, M.: Physicochemical properties determined by ∆pKa for protic ionic liquids based on an organic super-strong base with various brønsted acids. Phys. Chem. Chem. Phys. 14, 5178–5186 (2012)
Stoimenovski, J., Izgorodina, E.I., MacFarlane, D.R.: Ionicity and proton transfer in protic ionic liquids. Phys. Chem. Chem. Phys. 12, 10341–10347 (2010)
Belieres, J.P., Angell, C.A.: Protic ionic liquids: preparation, characterization, and proton free energy level representation. J. Phys. Chem. B 111, 4926–4937 (2007)
Pham, T.P., Cho, C.W., Yun, Y.S.: Environmental fate and toxicity of ionic liquids: a review. Water Res. 44, 352–372 (2010)
Latała, A., Nędzi, M., Stepnowski, P.: Toxicity of imidazolium and pyridinium based ionic liquids towards algae. bacillaria paxillifer (a microphytobenthic diatom) and geitlerinema amphibium (a microphytobenthic blue green alga). Green Chem. 11, 1371–1376 (2009)
Gathergood, N., Scammells, P.J., Garcia, M.T.: Biodegradable ionic liquids: Part III. The first readily biodegradable ionic liquids. Green Chem. 8, 156–160 (2006)
Harjani, J.R., Farrell, J., Garcia, M.T., Singer, R.D., Scammells, P.J.: Further investigation of the biodegradability of imidazolium ionic liquids. Green Chem. 11, 821–829 (2009)
Arce, A., Earle, M.J., Rodríguez, H., Seddon, K.R., Soto, A.: 1-Ethyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide as solvent for the separation of aromatic and aliphatic hydrocarbons by liquid extraction-extension to C7- and C8-fractions. Green Chem. 10, 1294–1300 (2008)
Meindersma, G.W., Podt, A.J.G., de Haan, A.B.: Ternary liquid–liquid equilibria for mixtures of toluene + n-heptane + an ionic liquid. Fluid Phase Equilib. 247, 158–168 (2006)
Arce, A., Rodríguez, O., Soto, A.: A comparative study on solvents for separation of tert-amyl ethyl ether and ethanol mixtures. New experimental data for 1-ethyl-3-methyl imidazolium ethyl sulfate ionic liquid. Chem. Eng. Sci. 61, 6929–6935 (2006)
Eber, J., Wasserscheid, P., Jess, A.: Deep desulfurization of oil refinery streams by extraction with ionic liquids. Green Chem. 6, 316–322 (2004)
Holbrey, J.D., Reichert, W.M., Swatloski, R.P., Broker, G.A., Pitner, W.R., Seddon, K.R., Rogers, R.D.: Efficient, halide free synthesis of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethyl-sulfate anions. Green Chem. 4, 407–413 (2002)
Habibi-Yangjeh, A., Jafari-Tarzanag, Y., Banaei, A.R.: Solvent effects on kinetics of an aromatic nucleophilic substitution reaction in mixtures of an ionic liquid with molecular solvents and prediction using artificial neural networks. Int. J. Chem. Kinet. 41, 153–159 (2009)
Singh, A., Kumar, A.: Probing the mechanism of Baylis-Hillman reaction in ionic liquids. J. Org. Chem. 77, 8775–8779 (2012)
Chiappe, C., Pieraccini, D.: Ionic liquids: solvent properties and organic reactivity. J. Phys. Org. Chem. 18, 275–297 (2005)
Oliveira, F.S., Dohrn, R., Pereiro, A.B., Araujo, J.M.M., Rebelo, L.P.N., Marrucho, I.M.: Designing high ionicity ionic liquids based on 1-ethyl-3-methylimidazolium ethyl sulphate for effective azeotrope breaking. Fluid Phase Equilib. 419, 57–66 (2016)
Oliveira, F.S., Pereiro, A.B., Araujo, J.M., Bernardes, C.E., Canongia Lopes, J.N., Todorovic, S., Feio, G., Almeida, P.L., Rebelo, L.P., Marrucho, I.M.: High ionicity ionic liquids (HIILs): comparing the effect of ethylsulfonate and ethylsulfate anions. Phys. Chem. Chem. Phys. 15, 18138–18147 (2013)
Pereiro, A.B., Araujo, J.M., Oliveira, F.S., Bernardes, C.E., Esperanca, J.M., Lopes, J.N., Marrucho, I.M., Rebelo, L.P.: Inorganic salts in purely ionic liquid media: the development of high ionicity ionic liquids (HIILs). Chem. Commun. 48, 3656–3658 (2012)
Yu, Y.-H., Soriano, A.N., Li, M.-H.: Heat capacities and electrical conductivities of 1-ethyl 3-methylimidazolium-based ionic liquids. J. Chem. Thermodyn. 41, 103–108 (2009)
Vila, J., Ginés, P., Pico, J.M., Franjo, C., Jiménez, E., Varela, L.M., Cabeza, O.: Temperature dependence of the electrical conductivity in EMIM-based ionic liquids: evidence of Vogel–Tamman–Fulcher behavior. Fluid Phase Equilib. 242, 141–146 (2006)
Vila, J., Varela, L.M., Cabeza, O.: Cation and anion sizes influence in the temperature dependence of the electrical conductivity in nine imidazolium based ionic liquids. Electrochim. Acta 52, 7413–7417 (2007)
Fröba, A.P., Rausch, M.H., Krzeminski, K., Assenbaum, D., Wasserscheid, P., Leipertz, A.: Thermal conductivity of ionic liquids: measurement and prediction. Int. J. Thermophys. 31, 2059–2077 (2010)
Bešter-Rogač, M., Hunger, J., Stoppa, A., Buchner, R.: 1-Ethyl-3-methylimidazolium ethylsulfate in water, acetonitrile, and dichloromethane: molar conductivities and association constants. J. Chem. Eng. Data 56, 1261–1267 (2011)
Ogihara, W., Kosukegawa, H., Ohno, H.: Proton-conducting ionic liquids based upon multivalent anions and alkylimidazolium cations. Chem. Commun. 34, 3637–3639 (2006)
Jain, P., Kumar, A.: Concentration-dependent apparent partition coefficients of ionic liquids possessing ethyl- and bi-sulphate anions. Phys. Chem. Chem. Phys. 18, 1105–1113 (2016) and pertinent references cited therein
Stark, A., Behrend, P., Braun, O., Müller, A., Ranke, J., Ondruschka, B., Jastorff, B.: Purity specification methods for ionic liquids. Green Chem. 10, 1152–1161 (2008)
Khupse, N.D., Kumar, A.: Dramatic change in viscosities of pure ionic liquids upon addition of molecular solvents. J. Solution Chem. 38, 589–600 (2009)
Isono, T.: Density, viscosity, and electrolytic conductivity of concentrated aqueous electrolyte solutions at several temperatures. Alkaline-earth chlorides, lanthanum chloride, sodium chloride, sodium nitrate, sodium bromide, potassium nitrate, potassium bromide, and cadmium nitrate. J. Chem. Eng. Data 29, 45–52 (1984)
De La Hoz, A.T., Brauer, U.G., Miller, K.M.: Physicochemical and thermal properties for a series of 1-alkyl-4-methyl-1,2,4-triazolium bis(trifluoromethylsulfonyl)imide ionic liquids. J. Phys. Chem. B 118, 9944–9951 (2014)
Schreiner, C., Zugmann, S., Hartl, R., Gores, H.J.: Fractional Walden rule for ionic liquids: examples from recent measurements and a critique of the so-called ideal KCl line for the Walden plot. J. Chem. Eng. Data 55, 1784–1788 (2010)
Borun, A., Fernandez, C., Bald, A.: Conductance studies of aqueous ionic liquids solutions [emim][bf4] and [bmim][BF4] at temperatures from (283.15 to 318.15) K. Int. J. Electrochem. Soc. 10, 2120–2129 (2015)
Mahiuddin, S., Ismail, K.: Study of the concentration dependence of the conductance of aqueous electrolytes. J. Phys. Chem. 88, 1027–1031 (1984)
Krossing, I., Slattery, J.M., Daguenet, C., Dyson, P.J., Oleinikova, A., Weingärtner, H.: Why are ionic liquids liquid? A simple explanation based on lattice and solvation energies. J. Am. Chem. Soc. 128, 13427–13434 (2006)
Agmon, N.: The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995)
Jacquemin, J., Goodrich, P., Jiang, W., Rooney, D.W., Hardacre, C.: J. Phys. Chem. B 117, 1938–1949 (2013)
Wassercheid, P., Hal, R.V., Bosmann, A.: Green Chem. 4, 400–404 (2002)
Acknowledgements
P.J. thanks CSIR, New Delhi, for awarding her a Senior Research Fellowship, while A.K. thanks DST, New Delhi, for awarding him a J. C. Bose National Fellowship (SR/S2/JCB-26/2009).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Jain, P., Kumar, A. Comparable Ionicity of the Solutions of Aprotic and Protic Ionic Liquids by Anion Substitution. J Solution Chem 46, 1315–1327 (2017). https://doi.org/10.1007/s10953-017-0640-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-017-0640-9