Skip to main content
Log in

Comparable Ionicity of the Solutions of Aprotic and Protic Ionic Liquids by Anion Substitution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Temperature dependent molar conductances and fluidities of bisulfate and ethyl sulfate anion-based ionic liquids were measured. The extent of dissociation of the ionic liquids was estimated from the Walden plot in term of ionicity. The ionicity mainly depends on the magnitude of Coulombic forces, altered by the anion’s Lewis basicity. Aqueous solutions of aprotic ionic liquids, in general, possesses ionicity in the range of ≈70–99%. This article reveals that the substitution of the anion by bisulfate and ethylsulfate reduces the ionicity of aqueous solution of these ionic liquids to the range of 10–37%. This is very close to that exhibited by some of the protic ionic liquids and phosphonium based ionic liquids with sweetner anions. The concentration dependent molar conductance of these ionic liquids has been fitted to Mahiuddin and Ismail’s equation. To our surprise, the molar conductances of bisulfate-based aprotic ionic liquids are remarkably high, even though these ionic liquids possess lower ionicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Welton, T.: Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)

    Article  CAS  Google Scholar 

  2. Hallett, J.P., Welton, T.: Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev. 111, 3508–3576 (2011)

    Article  CAS  Google Scholar 

  3. Wasserscheid, P., Welton, T.: Ionic Liquids in Synthesis, pp. 689–704. Wiley, Weinheim (2008)

    Google Scholar 

  4. Dupont, J., Suarez, P.A.Z.: Physico-chemical processes in imidazolium ionic liquids. Phys. Chem. Chem. Phys. 8, 2441–2452 (2006)

    Article  CAS  Google Scholar 

  5. Weingartner, H.: Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew. Chem. Int. Ed. Engl. 47, 654–670 (2008)

    Article  Google Scholar 

  6. Sheldon, R.: Catalytic reactions in ionic liquids. Chem. Commun. 23, 2399–2407 (2001)

    Article  Google Scholar 

  7. Yang, H., Gu, Y., Deng, Y., Shi, F.: Electrochemical activation of carbon dioxide in ionic liquid: synthesis of cyclic carbonates at mild reaction conditions. Chem. Commun. 3, 274–275 (2002)

    Article  Google Scholar 

  8. MacFarlane, D.R., Tachikawa, N., Forsyth, M., Pringle, J.M., Howlett, P.C., Elliott, G.D., Davis, J.H., Watanabe, M., Simon, P., Angell, C.A.: Energy applications of ionic liquids. Energy Environ. Sci. 7, 232–250 (2014)

    Article  CAS  Google Scholar 

  9. Bayley, P.M., Lane, G.H., Rocher, N.M., Clare, B.R., Best, A.S., MacFarlane, D.R., Forsyth, M.: Transport properties of ionic liquid electrolytes with organic diluents. Phys. Chem. Chem. Phys. 11, 7202–7208 (2009)

    Article  CAS  Google Scholar 

  10. Gebresilassie Eshetu, G., Armand, M., Scrosati, B., Passerini, S.: Energy storage materials synthesized from ionic liquids. Angew. Chem. Int. Ed. Engl. 53, 13342–13359 (2014)

    Article  CAS  Google Scholar 

  11. Angell, C.A., Xu, W., Belieres, J.P., Yoshizawa, M.: Ionic liquids and ionic liquid acids with high temperature stability for fuel cell and other high temperature applications, method of making and cell employing same. US Patent 7867658 B2 (2011)

  12. Goodenough, J.B., Park, K.S.: The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013)

    Article  CAS  Google Scholar 

  13. Wang, P., Zakeeruddin, S.M., Comte, P., Exnar, I., Gratzel, M.: Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J. Am. Chem. Soc. 125, 1166–1167 (2003)

    Article  CAS  Google Scholar 

  14. Wang, P., Zakeeruddin, S.M., Exnar, I., Gratzel, M.: High efficiency dye-sensitized nano crystalline solar cells based on ionic liquid polymer gel electrolyte. Chem. Commun. 24, 2972–2973 (2002)

    Article  Google Scholar 

  15. Yoshizawa, M., Xu, W., Angell, C.A.: Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of ∆pKa from aqueous solutions. J. Am. Chem. Soc. 125, 15411–15419 (2003)

    Article  CAS  Google Scholar 

  16. Xu, W., Cooper, E.I., Angell, C.A.: Ionic liquids: ion mobilities, glass temperatures, and fragilities. J. Phys. Chem. B 107, 6170–6178 (2003)

    Article  CAS  Google Scholar 

  17. Angell, C.A., Byrne, N., Belieres, J.P.: Parallel developments in aprotic and protic ionic liquids: physical chemistry and applications. Acc. Chem. Res. 40, 1228–1236 (2007)

    Article  CAS  Google Scholar 

  18. Fraser, K.J., Izgorodina, E.I., Forsyth, M., Scott, J.L., MacFarlane, D.R.: Liquids intermediate between “molecular” and “ionic” liquids: liquid ion pairs? Chem. Commun. 37, 3817–3819 (2007)

    Article  Google Scholar 

  19. Zhao, C., Burrell, G., Torriero, A.A., Separovic, F., Dunlop, N.F., MacFarlane, D.R., Bond, A.M.: Electrochemistry of room temperature protic ionic liquids. J. Phys. Chem. B 112, 6923–6936 (2008)

    Article  CAS  Google Scholar 

  20. MacFarlane, D.R., Forsyth, M., Izgorodina, E.I., Abbott, A.P., Annat, G., Fraser, K.: On the concept of ionicity in ionic liquids. Phys. Chem. Chem. Phys. 11, 4962–4967 (2009)

    Article  CAS  Google Scholar 

  21. Thawarkar, S., Khupse, N.D., Kumar, A.: Solvent-mediated molar conductivity of protic ionic liquids. Phys. Chem. Chem. Phys. 17, 475–482 (2015)

    Article  CAS  Google Scholar 

  22. Thawarkar, S., Khupse, N.D., Kumar, A.: Comparative investigation of the ionicity of aprotic and protic ionic liquids in molecular solvents by using conductometry and NMR spectroscopy. ChemPhysChem 17, 1006–1017 (2016)

    Article  CAS  Google Scholar 

  23. Noda, A., Susan, M.A.B.H., Kudo, K., Mitsushima, S., Hayamizu, K., Watanabe, M.: Brønsted acid – base ionic liquids as proton-conducting nonaqueous electrolytes. J. Phys. Chem. B 107, 4024–4033 (2003)

    Article  CAS  Google Scholar 

  24. Tokuda, H., Hayamizu, K., Ishii, K., Susan, M.A.B.H., Watanabe, M.: Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B 108, 16593–16600 (2004)

    Article  CAS  Google Scholar 

  25. Tokuda, H., Hayamizu, K., Ishii, K., Susan, M.A.B.H., Watanabe, M.: Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J. Phys. Chem. B 109, 6103–6110 (2005)

    Article  CAS  Google Scholar 

  26. Tokuda, H., Tsuzuki, S., Susan, M.A.B.H., Hayamizu, K., Watanabe, M.: How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J. Phys. Chem. B 110, 19593–19600 (2006)

    Article  CAS  Google Scholar 

  27. Ueno, K., Tokuda, H., Watanabe, M.: Ionicity in ionic liquids: correlation with ionic structure and physicochemical properties. Phys. Chem. Chem. Phys. 12, 1649–1658 (2010)

    Article  CAS  Google Scholar 

  28. Miran, M.S., Kinoshita, H., Yasuda, T., Susan, M.A.B.H., Watanabe, M.: Physicochemical properties determined by ∆pKa for protic ionic liquids based on an organic super-strong base with various brønsted acids. Phys. Chem. Chem. Phys. 14, 5178–5186 (2012)

    Article  CAS  Google Scholar 

  29. Stoimenovski, J., Izgorodina, E.I., MacFarlane, D.R.: Ionicity and proton transfer in protic ionic liquids. Phys. Chem. Chem. Phys. 12, 10341–10347 (2010)

    Article  CAS  Google Scholar 

  30. Belieres, J.P., Angell, C.A.: Protic ionic liquids: preparation, characterization, and proton free energy level representation. J. Phys. Chem. B 111, 4926–4937 (2007)

    Article  CAS  Google Scholar 

  31. Pham, T.P., Cho, C.W., Yun, Y.S.: Environmental fate and toxicity of ionic liquids: a review. Water Res. 44, 352–372 (2010)

    Article  CAS  Google Scholar 

  32. Latała, A., Nędzi, M., Stepnowski, P.: Toxicity of imidazolium and pyridinium based ionic liquids towards algae. bacillaria paxillifer (a microphytobenthic diatom) and geitlerinema amphibium (a microphytobenthic blue green alga). Green Chem. 11, 1371–1376 (2009)

    Article  Google Scholar 

  33. Gathergood, N., Scammells, P.J., Garcia, M.T.: Biodegradable ionic liquids: Part III. The first readily biodegradable ionic liquids. Green Chem. 8, 156–160 (2006)

    Article  CAS  Google Scholar 

  34. Harjani, J.R., Farrell, J., Garcia, M.T., Singer, R.D., Scammells, P.J.: Further investigation of the biodegradability of imidazolium ionic liquids. Green Chem. 11, 821–829 (2009)

    Article  CAS  Google Scholar 

  35. Arce, A., Earle, M.J., Rodríguez, H., Seddon, K.R., Soto, A.: 1-Ethyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide as solvent for the separation of aromatic and aliphatic hydrocarbons by liquid extraction-extension to C7- and C8-fractions. Green Chem. 10, 1294–1300 (2008)

    Article  CAS  Google Scholar 

  36. Meindersma, G.W., Podt, A.J.G., de Haan, A.B.: Ternary liquid–liquid equilibria for mixtures of toluene + n-heptane + an ionic liquid. Fluid Phase Equilib. 247, 158–168 (2006)

    Article  CAS  Google Scholar 

  37. Arce, A., Rodríguez, O., Soto, A.: A comparative study on solvents for separation of tert-amyl ethyl ether and ethanol mixtures. New experimental data for 1-ethyl-3-methyl imidazolium ethyl sulfate ionic liquid. Chem. Eng. Sci. 61, 6929–6935 (2006)

    Article  CAS  Google Scholar 

  38. Eber, J., Wasserscheid, P., Jess, A.: Deep desulfurization of oil refinery streams by extraction with ionic liquids. Green Chem. 6, 316–322 (2004)

    Article  CAS  Google Scholar 

  39. Holbrey, J.D., Reichert, W.M., Swatloski, R.P., Broker, G.A., Pitner, W.R., Seddon, K.R., Rogers, R.D.: Efficient, halide free synthesis of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethyl-sulfate anions. Green Chem. 4, 407–413 (2002)

    Article  CAS  Google Scholar 

  40. Habibi-Yangjeh, A., Jafari-Tarzanag, Y., Banaei, A.R.: Solvent effects on kinetics of an aromatic nucleophilic substitution reaction in mixtures of an ionic liquid with molecular solvents and prediction using artificial neural networks. Int. J. Chem. Kinet. 41, 153–159 (2009)

    Article  CAS  Google Scholar 

  41. Singh, A., Kumar, A.: Probing the mechanism of Baylis-Hillman reaction in ionic liquids. J. Org. Chem. 77, 8775–8779 (2012)

    Article  CAS  Google Scholar 

  42. Chiappe, C., Pieraccini, D.: Ionic liquids: solvent properties and organic reactivity. J. Phys. Org. Chem. 18, 275–297 (2005)

    Article  CAS  Google Scholar 

  43. Oliveira, F.S., Dohrn, R., Pereiro, A.B., Araujo, J.M.M., Rebelo, L.P.N., Marrucho, I.M.: Designing high ionicity ionic liquids based on 1-ethyl-3-methylimidazolium ethyl sulphate for effective azeotrope breaking. Fluid Phase Equilib. 419, 57–66 (2016)

    Article  CAS  Google Scholar 

  44. Oliveira, F.S., Pereiro, A.B., Araujo, J.M., Bernardes, C.E., Canongia Lopes, J.N., Todorovic, S., Feio, G., Almeida, P.L., Rebelo, L.P., Marrucho, I.M.: High ionicity ionic liquids (HIILs): comparing the effect of ethylsulfonate and ethylsulfate anions. Phys. Chem. Chem. Phys. 15, 18138–18147 (2013)

    Article  CAS  Google Scholar 

  45. Pereiro, A.B., Araujo, J.M., Oliveira, F.S., Bernardes, C.E., Esperanca, J.M., Lopes, J.N., Marrucho, I.M., Rebelo, L.P.: Inorganic salts in purely ionic liquid media: the development of high ionicity ionic liquids (HIILs). Chem. Commun. 48, 3656–3658 (2012)

    Article  CAS  Google Scholar 

  46. Yu, Y.-H., Soriano, A.N., Li, M.-H.: Heat capacities and electrical conductivities of 1-ethyl 3-methylimidazolium-based ionic liquids. J. Chem. Thermodyn. 41, 103–108 (2009)

    Article  CAS  Google Scholar 

  47. Vila, J., Ginés, P., Pico, J.M., Franjo, C., Jiménez, E., Varela, L.M., Cabeza, O.: Temperature dependence of the electrical conductivity in EMIM-based ionic liquids: evidence of Vogel–Tamman–Fulcher behavior. Fluid Phase Equilib. 242, 141–146 (2006)

    Article  CAS  Google Scholar 

  48. Vila, J., Varela, L.M., Cabeza, O.: Cation and anion sizes influence in the temperature dependence of the electrical conductivity in nine imidazolium based ionic liquids. Electrochim. Acta 52, 7413–7417 (2007)

    Article  CAS  Google Scholar 

  49. Fröba, A.P., Rausch, M.H., Krzeminski, K., Assenbaum, D., Wasserscheid, P., Leipertz, A.: Thermal conductivity of ionic liquids: measurement and prediction. Int. J. Thermophys. 31, 2059–2077 (2010)

    Article  Google Scholar 

  50. Bešter-Rogač, M., Hunger, J., Stoppa, A., Buchner, R.: 1-Ethyl-3-methylimidazolium ethylsulfate in water, acetonitrile, and dichloromethane: molar conductivities and association constants. J. Chem. Eng. Data 56, 1261–1267 (2011)

    Article  Google Scholar 

  51. Ogihara, W., Kosukegawa, H., Ohno, H.: Proton-conducting ionic liquids based upon multivalent anions and alkylimidazolium cations. Chem. Commun. 34, 3637–3639 (2006)

    Article  Google Scholar 

  52. Jain, P., Kumar, A.: Concentration-dependent apparent partition coefficients of ionic liquids possessing ethyl- and bi-sulphate anions. Phys. Chem. Chem. Phys. 18, 1105–1113 (2016) and pertinent references cited therein

    Article  CAS  Google Scholar 

  53. Stark, A., Behrend, P., Braun, O., Müller, A., Ranke, J., Ondruschka, B., Jastorff, B.: Purity specification methods for ionic liquids. Green Chem. 10, 1152–1161 (2008)

    Article  CAS  Google Scholar 

  54. Khupse, N.D., Kumar, A.: Dramatic change in viscosities of pure ionic liquids upon addition of molecular solvents. J. Solution Chem. 38, 589–600 (2009)

    Article  CAS  Google Scholar 

  55. Isono, T.: Density, viscosity, and electrolytic conductivity of concentrated aqueous electrolyte solutions at several temperatures. Alkaline-earth chlorides, lanthanum chloride, sodium chloride, sodium nitrate, sodium bromide, potassium nitrate, potassium bromide, and cadmium nitrate. J. Chem. Eng. Data 29, 45–52 (1984)

    Article  CAS  Google Scholar 

  56. De La Hoz, A.T., Brauer, U.G., Miller, K.M.: Physicochemical and thermal properties for a series of 1-alkyl-4-methyl-1,2,4-triazolium bis(trifluoromethylsulfonyl)imide ionic liquids. J. Phys. Chem. B 118, 9944–9951 (2014)

    Article  Google Scholar 

  57. Schreiner, C., Zugmann, S., Hartl, R., Gores, H.J.: Fractional Walden rule for ionic liquids: examples from recent measurements and a critique of the so-called ideal KCl line for the Walden plot. J. Chem. Eng. Data 55, 1784–1788 (2010)

    Article  CAS  Google Scholar 

  58. Borun, A., Fernandez, C., Bald, A.: Conductance studies of aqueous ionic liquids solutions [emim][bf4] and [bmim][BF4] at temperatures from (283.15 to 318.15) K. Int. J. Electrochem. Soc. 10, 2120–2129 (2015)

    CAS  Google Scholar 

  59. Mahiuddin, S., Ismail, K.: Study of the concentration dependence of the conductance of aqueous electrolytes. J. Phys. Chem. 88, 1027–1031 (1984)

    Article  CAS  Google Scholar 

  60. Krossing, I., Slattery, J.M., Daguenet, C., Dyson, P.J., Oleinikova, A., Weingärtner, H.: Why are ionic liquids liquid? A simple explanation based on lattice and solvation energies. J. Am. Chem. Soc. 128, 13427–13434 (2006)

    Article  CAS  Google Scholar 

  61. Agmon, N.: The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995)

    Article  CAS  Google Scholar 

  62. Jacquemin, J., Goodrich, P., Jiang, W., Rooney, D.W., Hardacre, C.: J. Phys. Chem. B 117, 1938–1949 (2013)

    Article  CAS  Google Scholar 

  63. Wassercheid, P., Hal, R.V., Bosmann, A.: Green Chem. 4, 400–404 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

P.J. thanks CSIR, New Delhi, for awarding her a Senior Research Fellowship, while A.K. thanks DST, New Delhi, for awarding him a J. C. Bose National Fellowship (SR/S2/JCB-26/2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, P., Kumar, A. Comparable Ionicity of the Solutions of Aprotic and Protic Ionic Liquids by Anion Substitution. J Solution Chem 46, 1315–1327 (2017). https://doi.org/10.1007/s10953-017-0640-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0640-9

Keywords

Navigation