Skip to main content
Log in

Theoretical and Experimental Pathways for the Dehydrogenation of Ethylene Diamine Bisborane by an Ammonium Based Ionic Liquid

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The current work reports both theoretical and experimental pathways for the dehydrogenation of ethylene diamine bisborane (EDAB) facilitated by tributylmethylammonium methyl sulfate ([N4441][MtSO4]). Initially, the selection of ionic liquid (IL) was made by comparing the hydrogen bond interaction energies with the experimental basicity using the quantum chemical based COSMO-RS predictions. Keeping economics in mind, [BMIM]+, [BMpyr]+, and [N4441]+ cations coupled with [OMs], [MtSO4] anions were selected. This led us to the choice of tributylmethylammonium methyl sulfate ([N4441][MtSO4]) as a potential IL for the dehydrogenation reaction. The dehydrogenation experiment was then carried out at T = 105 °C and inert atmosphere, resulting in a release of 2.31 equivalents of hydrogen. The catalytic role of IL was confirmed by 1H NMR analysis. HR-MS analysis elucidated the structural integrity of IL at the end of dehydrogenation reaction and gave the final mass of the residual oligomers. 11B NMR characterization confirmed a ~2 h induction period for dehydrogenation and formation of a trigonal boron (sp2) –BH2 moiety after 150 min of reaction. Based on the dual characterization by HR-MS and 11B NMR, we propose a dehydrogenation mechanism for EDAB/[N4441][MtSO4] system under inert conditions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Singh, L., Wahid, Z.A.: Methods for enhancing bio-hydrogen production from biological process: a review. J. Ind. Eng. Chem. 21, 70–80 (2015)

    Article  CAS  Google Scholar 

  2. Eberle, U., Felderhoff, M., Schüth, F.: Chemical and physical solutions for hydrogen storage. Angew. Chem. Int. Ed. 48, 6608–6630 (2009)

    Article  CAS  Google Scholar 

  3. Hea, T., Peia, Q., Chen, P.: Liquid organic hydrogen carriers. J. Energy Chem. 24, 587–594 (2015)

    Article  Google Scholar 

  4. Hoffmann, R.: Extended Hückel theory. III. Compounds of boron and nitrogen. J. Chem. Phys. 40, 2474–2480 (1964)

    Article  CAS  Google Scholar 

  5. Yu, P., Chua, Y.S., Cao, H., Xiong, Z., Wu, G., Chen, P.: Hydrogen storage over alkali metal hydride and alkali metal hydroxide composites. J. Energy Chem. 23, 414–419 (2014)

    Article  Google Scholar 

  6. Stephens, F.H., Pons, V., Baker, R.T.: Ammonia-borane: the hydrogen source par excellence? Dalton Trans. 2613–2626 (2007)

  7. Al-Kukhun, A., Hwang, H.T., Varma, A.: A comparison of ammonia borane dehydrogenation methods for proton-exchange-membrane fuel cell vehicles: hydrogen yield and ammonia formation and its removal. Ind. Eng. Chem. Res. 50, 8824–8835 (2011)

    Article  CAS  Google Scholar 

  8. Halseid, R., Vie, P.J.S., Tunold, R.: Effect of ammonia on the performance of polymer electrolyte membrane fuel cells. J. Power Sources 154, 343–350 (2006)

    Article  CAS  Google Scholar 

  9. Yamamoto, Y., Miyamoto, K., Umeda, J., Nakatani, Y., Yamamoto, T., Miyaura, N.: Synthesis of B-trisubstituted borazines via the rhodium-catalyzed hydroboration of alkenes with N, N′, N″-trimethyl or N, N′, N″-triethylborazine. Organomet. Chem. 691, 4909–4917 (2006)

    Article  CAS  Google Scholar 

  10. Stowe, A.C., Shaw, W.J., Linehan, J.C., Schmid, B., Autrey, T.: In situ solid state 11B MAS-NMR studies of the thermal decomposition of ammonia borane: mechanistic studies of the hydrogen release pathways from a solid state hydrogen storage material. Phys. Chem. Chem. Phys. 9, 1831–1836 (2007)

    Article  CAS  Google Scholar 

  11. Neiner, D., Karkamkar, A., Bowden, M., Choi, Y.J., Luedtke, A., Holladay, J., Fisher, A., Szymczak, N., Autrey, T.: Kinetic and thermodynamic investigation of hydrogen release from ethane 1,2-di-amineborane. Energy Environ. Sci. 4, 4187–4193 (2011)

    Article  CAS  Google Scholar 

  12. Himmelberger, D.W., Alden, L.R., Bluhm, M.E., Sneddon, L.G.: Ammonia borane hydrogen release in ionic liquids. Inorg. Chem. 48, 9883–9889 (2009)

    Article  CAS  Google Scholar 

  13. Bluhm, M.E., Bradley, M.G., Butterick, R., Kusari, U., Sneddon, L.G.: Amine borane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids. J. Am. Chem. Soc. 128, 7748–7749 (2006)

    Article  CAS  Google Scholar 

  14. Sahler, S., Konnerth, H., Knoblauch, N., Prechtl, M.H.G.: Hydrogen storage in amine boranes: ionic liquid supported thermal dehydrogenation of ethylene diamine bisborane. Int. J. Hydrogen Energy 38, 3283–3290 (2013)

    Article  CAS  Google Scholar 

  15. Banerjee, B., Kundu, D., Pugazhenthi, G., Banerjee, T.: Quantum chemical and experimental insights for the ionic liquid facilitated thermal dehydrogenation of ethylene diamine bisborane. RSC Adv. 5, 85280–85290 (2015)

    Article  CAS  Google Scholar 

  16. Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)

    Article  CAS  Google Scholar 

  17. Van Rantwijk, F., Sheldon, R.A.: Biocatalysis in ionic liquids. Chem. Rev. 107, 2757–2785 (2007)

    Article  Google Scholar 

  18. Zhang, G.R., Etzold, B.J.M.: Ionic liquids in electrocatalysis. J. Energy Chem. 25, 199–207 (2016)

    Article  Google Scholar 

  19. Beier, M.J., Andanson, J.M., Mallat, T., Krumeich, F., Baiker, A.: Ionic liquid-supported Pt nanoparticles as catalysts for enantioselective hydrogenation. ACS Catal. 2, 337–340 (2012)

    Article  CAS  Google Scholar 

  20. Manohar, C.V., Rabari, D., Kumar, A.A.P., Banerjee, T., Mohanty, K.: Liquid–liquid equilibria studies on ammonium and phosphonium based ionic liquid–aromatic–aliphatic component at T = 298.15 K and p = 1 bar: correlations and a priori predictions. Fluid Phase Equilib. 360, 392–400 (2013)

    Article  CAS  Google Scholar 

  21. Kundu, D., Banerjee, T.: Multicomponent vapor–liquid–liquid equilibrium prediction using an a priori segment based model. Ind. Eng. Chem. Res. 50, 14090–14096 (2011)

    Article  CAS  Google Scholar 

  22. Anderson, K., Atkins, M.P., Goodrich, P., Hardacre, C., Hussain, A.S., Pilus, R., Rooney, D.W.: Naphthenic acid extraction and speciation from Doba crude oil using carbonate-based ionic liquids. Fuel 146, 60–68 (2015)

    Article  CAS  Google Scholar 

  23. Santos, E., Albo, J., Irabien, A.: Acetate based supported ionic liquid membranes (silms) for CO2 separation: influence of the temperature. J. Membr. Sci. 452, 277–283 (2014)

    Article  CAS  Google Scholar 

  24. Sahler, S., Sturm, S., Kessler, M.T., Prechtl, M.H.G.: The role of ionic liquids in hydrogen storage. Chem. Eur. J. 20, 8934–8941 (2014)

    CAS  Google Scholar 

  25. Reddy, P.M., Venkatesu, P.: Influence of ionic liquids on the critical micellization temperature of a tri-block co-polymer in aqueous media. J. Colloid Interface Sci. 420, 166–173 (2014)

    Article  Google Scholar 

  26. Shamsi, S.A., Danielson, N.D.: Utility of ionic liquids in analytical separations. J. Sep. Sci. 30, 1729–1750 (2007)

    Article  CAS  Google Scholar 

  27. Weng, J., Wang, C., Li, H., Wang, Y.: Novel quaternary ammonium ionic liquids and their use as dual solvent-catalysts in the hydrolytic reaction. Green Chem. 8, 96–99 (2006)

    Article  CAS  Google Scholar 

  28. Mehnert, C.P., Dispenziere, N.C., Cook, R.A.: Preparation of C9-aldehyde via aldol condensation reactions in ionic liquid media. Chem. Commun. 15, 1610–1611 (2002)

    Article  Google Scholar 

  29. Attri, P., Venkatesu, P.: Exploring the thermal stability of α-chymotrypsin in protic ionic liquids. Process Biochem. 48, 462–470 (2013)

    Article  CAS  Google Scholar 

  30. Wei, W., Danielson, N.D.: Fluorescence and circular dichroism spectroscopy of cytochrome c in alkylammonium formate ionic liquids. Biomacromol 12, 290–297 (2011)

    Article  CAS  Google Scholar 

  31. Jha, I., Attri, P., Venkatesu, P.: Unexpected effects of the alteration of structure and stability of myoglobin and hemoglobin in ammonium-based ionic liquids. Phys. Chem. Chem. Phys. 16, 5514–5526 (2014)

    Article  CAS  Google Scholar 

  32. Rogers, R.D., Seddon, K.R., Volkov, S.: (Eds.) Green Industrial Applications of Ionic Liquids. Kluwer Academic Publishers, Dordrecht (2002)

  33. Plechkova, N.V., Seddon, K.R.: Ionic liquids: ‘designer’ solvents for green chemistry. In: Methods and Reagents for Green Chemistry. Wiley, New York (2007)

  34. Mutelet, F., Revelli, A., Jaubert, J., Sprunger, L.M., Acree Jr., W.E., Baker, G.A.: Partition coefficients of organic compounds in new imidazolium and tetralkylammonium based ionic liquids using inverse gas chromatography. J. Chem. Eng. Data 55, 234–242 (2010)

    Article  CAS  Google Scholar 

  35. Jacquemin, J., Goodrich, P., Jiang, W., Rooney, D.W., Hardacre, C.: Are alkyl sulfate-based protic and aprotic ionic liquids stable with water and alcohols? A thermodynamic approach. J. Phys. Chem. B 117, 1938–1949 (2013)

    Article  CAS  Google Scholar 

  36. Elias, A.M., Coelho, G.L.V.: Measurements of infinite dilution activity coefficients of alkanols in the ionic liquid tributylmethylammonium methyl sulfate using HS-SPME/GC/FID. J. Chem. Eng. Data 61, 1743–1748 (2016)

    Article  CAS  Google Scholar 

  37. Attri, P., Lee, S.H., Hwang, S.W., Kim, J.I.L., Jang, W., Kim, Y.B., Park, J.H., Kwon, G.C., Choi, E.H., Kim, I.T.: Effect of temperature on the interactions between low band gap polymer and ionic liquids. Thermochim. Acta 579, 15–21 (2014)

    Article  CAS  Google Scholar 

  38. Kundu, D., Banerjee, B., Pugazhenthi, G., Banerjee, T.: Reactive insights into the selective dehydrogenation of ethylene diamine bisborane facilitated by phosphonium based Ionic Liquids. Int. J. Hydrogen Energy 42, 2756–2770 (2017)

    Article  CAS  Google Scholar 

  39. Jessop, P.G., Jessop, D.A., Fu, D., Phan, L.: Solvatochromic parameters for solvents of interest in green chemistry. Green Chem. 14, 1245–1259 (2012)

    Article  CAS  Google Scholar 

  40. Klamt, A.: COSMO-RS from Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design. Elsevier, Amsterdam (2005)

    Google Scholar 

  41. Kurnia, K.A., Lima, F., Claudio, A.F.M., Coutinho, J.A.P., Freire, M.G.: Hydrogen-bond acidity of ionic liquids: an extended scale. Phys. Chem. Chem. Phys. 17, 18980–18990 (2015)

    Article  CAS  Google Scholar 

  42. Claudio, A.F.M., Swift, L., Hallett, J.P., Welton, T., Coutinho, J.A.P., Freire, M.G.: Extended scale for the hydrogen-bond basicity of ionic liquids. Phys. Chem. Chem. Phys. 16, 6593–6601 (2014)

    Article  CAS  Google Scholar 

  43. Anantharaj, R., Banerjee, T.: Fast solvent screening for the simultaneous hydrodesulfurization and hydrodenitrification of diesel oil using ionic liquids. J. Chem. Eng. Data 56, 2770–2785 (2011)

    Article  CAS  Google Scholar 

  44. Anantharaj, R., Banerjee, T.: Aromatic sulfur-nitrogen extraction using ionic liquids: Experiments and predictions using an a priori model AIChE J. 59, 4806–4815 (2013)

    CAS  Google Scholar 

  45. Leardini, F., Valero-Pedraza, M.J., Perez-Mayoral, E., Cantelli, R., Bañares, M.A.: Thermolytic decomposition of ethane 1,2-diamineborane investigated by thermoanalytical methods and in situ vibrational spectroscopy. J. Phys. Chem. C 118, 17221–17230 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work reported in this article was financially supported by a research Grant (SB/S3/CE/063/2013) under the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India. The authors further acknowledge the Central Instrument Facility of the Indian Institute of Technology Guwahati (IIT Guwahati) and Central Instrument Facility of the Indian Institute of Science Education and Research Bhopal for providing use of their 1H and 11B NMR facilities. Due acknowledgements are also to the Analytical Laboratory within the Department of Chemistry, IIT Guwahati, for letting us record the HR-MS spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamal Banerjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, D., Chakma, S., Pugazhenthi, G. et al. Theoretical and Experimental Pathways for the Dehydrogenation of Ethylene Diamine Bisborane by an Ammonium Based Ionic Liquid. J Solution Chem 46, 1230–1250 (2017). https://doi.org/10.1007/s10953-017-0636-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0636-5

Keywords

Navigation