Abstract
The current work reports both theoretical and experimental pathways for the dehydrogenation of ethylene diamine bisborane (EDAB) facilitated by tributylmethylammonium methyl sulfate ([N4441][MtSO4]). Initially, the selection of ionic liquid (IL) was made by comparing the hydrogen bond interaction energies with the experimental basicity using the quantum chemical based COSMO-RS predictions. Keeping economics in mind, [BMIM]+, [BMpyr]+, and [N4441]+ cations coupled with [OMs]−, [MtSO4]− anions were selected. This led us to the choice of tributylmethylammonium methyl sulfate ([N4441][MtSO4]) as a potential IL for the dehydrogenation reaction. The dehydrogenation experiment was then carried out at T = 105 °C and inert atmosphere, resulting in a release of 2.31 equivalents of hydrogen. The catalytic role of IL was confirmed by 1H NMR analysis. HR-MS analysis elucidated the structural integrity of IL at the end of dehydrogenation reaction and gave the final mass of the residual oligomers. 11B NMR characterization confirmed a ~2 h induction period for dehydrogenation and formation of a trigonal boron (sp2) –BH2 moiety after 150 min of reaction. Based on the dual characterization by HR-MS and 11B NMR, we propose a dehydrogenation mechanism for EDAB/[N4441][MtSO4] system under inert conditions.
Graphical Abstract
Similar content being viewed by others
References
Singh, L., Wahid, Z.A.: Methods for enhancing bio-hydrogen production from biological process: a review. J. Ind. Eng. Chem. 21, 70–80 (2015)
Eberle, U., Felderhoff, M., Schüth, F.: Chemical and physical solutions for hydrogen storage. Angew. Chem. Int. Ed. 48, 6608–6630 (2009)
Hea, T., Peia, Q., Chen, P.: Liquid organic hydrogen carriers. J. Energy Chem. 24, 587–594 (2015)
Hoffmann, R.: Extended Hückel theory. III. Compounds of boron and nitrogen. J. Chem. Phys. 40, 2474–2480 (1964)
Yu, P., Chua, Y.S., Cao, H., Xiong, Z., Wu, G., Chen, P.: Hydrogen storage over alkali metal hydride and alkali metal hydroxide composites. J. Energy Chem. 23, 414–419 (2014)
Stephens, F.H., Pons, V., Baker, R.T.: Ammonia-borane: the hydrogen source par excellence? Dalton Trans. 2613–2626 (2007)
Al-Kukhun, A., Hwang, H.T., Varma, A.: A comparison of ammonia borane dehydrogenation methods for proton-exchange-membrane fuel cell vehicles: hydrogen yield and ammonia formation and its removal. Ind. Eng. Chem. Res. 50, 8824–8835 (2011)
Halseid, R., Vie, P.J.S., Tunold, R.: Effect of ammonia on the performance of polymer electrolyte membrane fuel cells. J. Power Sources 154, 343–350 (2006)
Yamamoto, Y., Miyamoto, K., Umeda, J., Nakatani, Y., Yamamoto, T., Miyaura, N.: Synthesis of B-trisubstituted borazines via the rhodium-catalyzed hydroboration of alkenes with N, N′, N″-trimethyl or N, N′, N″-triethylborazine. Organomet. Chem. 691, 4909–4917 (2006)
Stowe, A.C., Shaw, W.J., Linehan, J.C., Schmid, B., Autrey, T.: In situ solid state 11B MAS-NMR studies of the thermal decomposition of ammonia borane: mechanistic studies of the hydrogen release pathways from a solid state hydrogen storage material. Phys. Chem. Chem. Phys. 9, 1831–1836 (2007)
Neiner, D., Karkamkar, A., Bowden, M., Choi, Y.J., Luedtke, A., Holladay, J., Fisher, A., Szymczak, N., Autrey, T.: Kinetic and thermodynamic investigation of hydrogen release from ethane 1,2-di-amineborane. Energy Environ. Sci. 4, 4187–4193 (2011)
Himmelberger, D.W., Alden, L.R., Bluhm, M.E., Sneddon, L.G.: Ammonia borane hydrogen release in ionic liquids. Inorg. Chem. 48, 9883–9889 (2009)
Bluhm, M.E., Bradley, M.G., Butterick, R., Kusari, U., Sneddon, L.G.: Amine borane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids. J. Am. Chem. Soc. 128, 7748–7749 (2006)
Sahler, S., Konnerth, H., Knoblauch, N., Prechtl, M.H.G.: Hydrogen storage in amine boranes: ionic liquid supported thermal dehydrogenation of ethylene diamine bisborane. Int. J. Hydrogen Energy 38, 3283–3290 (2013)
Banerjee, B., Kundu, D., Pugazhenthi, G., Banerjee, T.: Quantum chemical and experimental insights for the ionic liquid facilitated thermal dehydrogenation of ethylene diamine bisborane. RSC Adv. 5, 85280–85290 (2015)
Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)
Van Rantwijk, F., Sheldon, R.A.: Biocatalysis in ionic liquids. Chem. Rev. 107, 2757–2785 (2007)
Zhang, G.R., Etzold, B.J.M.: Ionic liquids in electrocatalysis. J. Energy Chem. 25, 199–207 (2016)
Beier, M.J., Andanson, J.M., Mallat, T., Krumeich, F., Baiker, A.: Ionic liquid-supported Pt nanoparticles as catalysts for enantioselective hydrogenation. ACS Catal. 2, 337–340 (2012)
Manohar, C.V., Rabari, D., Kumar, A.A.P., Banerjee, T., Mohanty, K.: Liquid–liquid equilibria studies on ammonium and phosphonium based ionic liquid–aromatic–aliphatic component at T = 298.15 K and p = 1 bar: correlations and a priori predictions. Fluid Phase Equilib. 360, 392–400 (2013)
Kundu, D., Banerjee, T.: Multicomponent vapor–liquid–liquid equilibrium prediction using an a priori segment based model. Ind. Eng. Chem. Res. 50, 14090–14096 (2011)
Anderson, K., Atkins, M.P., Goodrich, P., Hardacre, C., Hussain, A.S., Pilus, R., Rooney, D.W.: Naphthenic acid extraction and speciation from Doba crude oil using carbonate-based ionic liquids. Fuel 146, 60–68 (2015)
Santos, E., Albo, J., Irabien, A.: Acetate based supported ionic liquid membranes (silms) for CO2 separation: influence of the temperature. J. Membr. Sci. 452, 277–283 (2014)
Sahler, S., Sturm, S., Kessler, M.T., Prechtl, M.H.G.: The role of ionic liquids in hydrogen storage. Chem. Eur. J. 20, 8934–8941 (2014)
Reddy, P.M., Venkatesu, P.: Influence of ionic liquids on the critical micellization temperature of a tri-block co-polymer in aqueous media. J. Colloid Interface Sci. 420, 166–173 (2014)
Shamsi, S.A., Danielson, N.D.: Utility of ionic liquids in analytical separations. J. Sep. Sci. 30, 1729–1750 (2007)
Weng, J., Wang, C., Li, H., Wang, Y.: Novel quaternary ammonium ionic liquids and their use as dual solvent-catalysts in the hydrolytic reaction. Green Chem. 8, 96–99 (2006)
Mehnert, C.P., Dispenziere, N.C., Cook, R.A.: Preparation of C9-aldehyde via aldol condensation reactions in ionic liquid media. Chem. Commun. 15, 1610–1611 (2002)
Attri, P., Venkatesu, P.: Exploring the thermal stability of α-chymotrypsin in protic ionic liquids. Process Biochem. 48, 462–470 (2013)
Wei, W., Danielson, N.D.: Fluorescence and circular dichroism spectroscopy of cytochrome c in alkylammonium formate ionic liquids. Biomacromol 12, 290–297 (2011)
Jha, I., Attri, P., Venkatesu, P.: Unexpected effects of the alteration of structure and stability of myoglobin and hemoglobin in ammonium-based ionic liquids. Phys. Chem. Chem. Phys. 16, 5514–5526 (2014)
Rogers, R.D., Seddon, K.R., Volkov, S.: (Eds.) Green Industrial Applications of Ionic Liquids. Kluwer Academic Publishers, Dordrecht (2002)
Plechkova, N.V., Seddon, K.R.: Ionic liquids: ‘designer’ solvents for green chemistry. In: Methods and Reagents for Green Chemistry. Wiley, New York (2007)
Mutelet, F., Revelli, A., Jaubert, J., Sprunger, L.M., Acree Jr., W.E., Baker, G.A.: Partition coefficients of organic compounds in new imidazolium and tetralkylammonium based ionic liquids using inverse gas chromatography. J. Chem. Eng. Data 55, 234–242 (2010)
Jacquemin, J., Goodrich, P., Jiang, W., Rooney, D.W., Hardacre, C.: Are alkyl sulfate-based protic and aprotic ionic liquids stable with water and alcohols? A thermodynamic approach. J. Phys. Chem. B 117, 1938–1949 (2013)
Elias, A.M., Coelho, G.L.V.: Measurements of infinite dilution activity coefficients of alkanols in the ionic liquid tributylmethylammonium methyl sulfate using HS-SPME/GC/FID. J. Chem. Eng. Data 61, 1743–1748 (2016)
Attri, P., Lee, S.H., Hwang, S.W., Kim, J.I.L., Jang, W., Kim, Y.B., Park, J.H., Kwon, G.C., Choi, E.H., Kim, I.T.: Effect of temperature on the interactions between low band gap polymer and ionic liquids. Thermochim. Acta 579, 15–21 (2014)
Kundu, D., Banerjee, B., Pugazhenthi, G., Banerjee, T.: Reactive insights into the selective dehydrogenation of ethylene diamine bisborane facilitated by phosphonium based Ionic Liquids. Int. J. Hydrogen Energy 42, 2756–2770 (2017)
Jessop, P.G., Jessop, D.A., Fu, D., Phan, L.: Solvatochromic parameters for solvents of interest in green chemistry. Green Chem. 14, 1245–1259 (2012)
Klamt, A.: COSMO-RS from Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design. Elsevier, Amsterdam (2005)
Kurnia, K.A., Lima, F., Claudio, A.F.M., Coutinho, J.A.P., Freire, M.G.: Hydrogen-bond acidity of ionic liquids: an extended scale. Phys. Chem. Chem. Phys. 17, 18980–18990 (2015)
Claudio, A.F.M., Swift, L., Hallett, J.P., Welton, T., Coutinho, J.A.P., Freire, M.G.: Extended scale for the hydrogen-bond basicity of ionic liquids. Phys. Chem. Chem. Phys. 16, 6593–6601 (2014)
Anantharaj, R., Banerjee, T.: Fast solvent screening for the simultaneous hydrodesulfurization and hydrodenitrification of diesel oil using ionic liquids. J. Chem. Eng. Data 56, 2770–2785 (2011)
Anantharaj, R., Banerjee, T.: Aromatic sulfur-nitrogen extraction using ionic liquids: Experiments and predictions using an a priori model AIChE J. 59, 4806–4815 (2013)
Leardini, F., Valero-Pedraza, M.J., Perez-Mayoral, E., Cantelli, R., Bañares, M.A.: Thermolytic decomposition of ethane 1,2-diamineborane investigated by thermoanalytical methods and in situ vibrational spectroscopy. J. Phys. Chem. C 118, 17221–17230 (2014)
Acknowledgements
The work reported in this article was financially supported by a research Grant (SB/S3/CE/063/2013) under the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India. The authors further acknowledge the Central Instrument Facility of the Indian Institute of Technology Guwahati (IIT Guwahati) and Central Instrument Facility of the Indian Institute of Science Education and Research Bhopal for providing use of their 1H and 11B NMR facilities. Due acknowledgements are also to the Analytical Laboratory within the Department of Chemistry, IIT Guwahati, for letting us record the HR-MS spectra.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kundu, D., Chakma, S., Pugazhenthi, G. et al. Theoretical and Experimental Pathways for the Dehydrogenation of Ethylene Diamine Bisborane by an Ammonium Based Ionic Liquid. J Solution Chem 46, 1230–1250 (2017). https://doi.org/10.1007/s10953-017-0636-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-017-0636-5